Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Cell ; 181(7): 1582-1595.e18, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32492408

ABSTRACT

N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.


Subject(s)
Adenosine/analogs & derivatives , RNA-Binding Proteins/metabolism , Adenosine/genetics , Adenosine/metabolism , Cell Differentiation , HeLa Cells , Humans , Methylation , Methyltransferases/metabolism , Protein Biosynthesis , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics
2.
Nat Immunol ; 23(5): 705-717, 2022 05.
Article in English | MEDLINE | ID: mdl-35487985

ABSTRACT

Caspase-11 detection of intracellular lipopolysaccharide (LPS) from invasive Gram-negative bacteria mediates noncanonical activation of the NLRP3 inflammasome. While avirulent bacteria do not invade the cytosol, their presence in tissues necessitates clearance and immune system mobilization. Despite sharing LPS, only live avirulent Gram-negative bacteria activate the NLRP3 inflammasome. Here, we found that bacterial mRNA, which signals bacterial viability, was required alongside LPS for noncanonical activation of the NLRP3 inflammasome in macrophages. Concurrent detection of bacterial RNA by NLRP3 and binding of LPS by pro-caspase-11 mediated a pro-caspase-11-NLRP3 interaction before caspase-11 activation and inflammasome assembly. LPS binding to pro-caspase-11 augmented bacterial mRNA-dependent assembly of the NLRP3 inflammasome, while bacterial viability and an assembled NLRP3 inflammasome were necessary for activation of LPS-bound pro-caspase-11. Thus, the pro-caspase-11-NLRP3 interaction nucleated a scaffold for their interdependent activation explaining their functional reciprocal exclusivity. Our findings inform new vaccine adjuvant combinations and sepsis therapy.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Caspase 1/metabolism , Caspases , Gram-Negative Bacteria , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA, Messenger
3.
Annu Rev Biochem ; 85: 349-73, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27294440

ABSTRACT

The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.


Subject(s)
Biosensing Techniques , DNA-Directed RNA Polymerases/ultrastructure , DNA/ultrastructure , Molecular Imaging/methods , Nanotechnology/methods , RNA/ultrastructure , Aptamers, Nucleotide/chemistry , Base Pairing , DNA/chemistry , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , In Situ Hybridization, Fluorescence , Microscopy, Atomic Force , Nanostructures/chemistry , Nanotechnology/instrumentation , Nucleic Acid Conformation , RNA/chemistry , Spinacia oleracea/chemistry
4.
Nat Rev Mol Cell Biol ; 20(10): 608-624, 2019 10.
Article in English | MEDLINE | ID: mdl-31520073

ABSTRACT

RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.


Subject(s)
Adenosine/analogs & derivatives , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA, Neoplasm/metabolism , Adenosine/genetics , Adenosine/metabolism , Animals , Humans , Methylation , Neoplasms/genetics , Neoplasms/pathology , RNA, Messenger/genetics , RNA, Neoplasm/genetics
5.
Annu Rev Cell Dev Biol ; 33: 319-342, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28759256

ABSTRACT

In recent years, m6A has emerged as an abundant and dynamically regulated modification throughout the transcriptome. Recent technological advances have enabled the transcriptome-wide identification of m6A residues, which in turn has provided important insights into the biology and regulation of this pervasive regulatory mark. Also central to our current understanding of m6A are the discovery and characterization of m6A readers, writers, and erasers. Over the last few years, studies into the function of these proteins have led to important discoveries about the regulation and function of m6A. However, during this time our understanding of these proteins has also evolved considerably, sometimes leading to the reversal of early concepts regarding the reading, writing and erasing of m6A. In this review, we summarize recent advances in m6A research, and we highlight how these new findings have reshaped our understanding of how m6A is regulated in the transcriptome.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , DNA Methylation/genetics , Humans , RNA/metabolism
7.
Cell ; 163(4): 999-1010, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26593424

ABSTRACT

Protein translation typically begins with the recruitment of the 43S ribosomal complex to the 5' cap of mRNAs by a cap-binding complex. However, some transcripts are translated in a cap-independent manner through poorly understood mechanisms. Here, we show that mRNAs containing N(6)-methyladenosine (m(6)A) in their 5' UTR can be translated in a cap-independent manner. A single 5' UTR m(6)A directly binds eukaryotic initiation factor 3 (eIF3), which is sufficient to recruit the 43S complex to initiate translation in the absence of the cap-binding factor eIF4E. Inhibition of adenosine methylation selectively reduces translation of mRNAs containing 5'UTR m(6)A. Additionally, increased m(6)A levels in the Hsp70 mRNA regulate its cap-independent translation following heat shock. Notably, we find that diverse cellular stresses induce a transcriptome-wide redistribution of m(6)A, resulting in increased numbers of mRNAs with 5' UTR m(6)A. These data show that 5' UTR m(6)A bypasses 5' cap-binding proteins to promote translation under stresses.


Subject(s)
Adenosine/analogs & derivatives , Peptide Chain Initiation, Translational , Protein Biosynthesis , 5' Untranslated Regions , Adenosine/metabolism , Animals , Embryo, Mammalian/metabolism , Eukaryotic Initiation Factor-3/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Fibroblasts/metabolism , HSP72 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Mice , Ribosomes/metabolism
8.
Mol Cell ; 82(12): 2236-2251, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35714585

ABSTRACT

Information in mRNA has largely been thought to be confined to its nucleotide sequence. However, the advent of mapping techniques to detect modified nucleotides has revealed that mRNA contains additional information in the form of chemical modifications. The most abundant modified nucleotide is N6-methyladenosine (m6A), a methyl modification of adenosine. Although early studies viewed m6A as a dynamic and tissue-specific modification, it is now clear that the mRNAs that contain m6A and the location of m6A in those transcripts are largely universal and are influenced by gene architecture, i.e., the size and location of exons and introns. m6A can affect nuclear processes such as splicing and epigenetic regulation, but the major effect of m6A on mRNAs is to promote degradation in the cytoplasm. m6A marks a functionally related cohort of mRNAs linked to certain biological processes, including cell differentiation and cell fate determination. m6A is also enriched in other cohorts of mRNAs and can therefore affect their respective cellular processes and pathways. Future work will focus on understanding how the m6A pathway is regulated to achieve control of m6A-containing mRNAs.


Subject(s)
Adenosine , Epigenesis, Genetic , Adenosine/genetics , Adenosine/metabolism , Gene Expression , Humans , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleotides , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Genes Dev ; 36(3-4): 180-194, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35058317

ABSTRACT

Mechanisms regulating meiotic progression in mammals are poorly understood. The N6-methyladenosine (m6A) reader and 3' → 5' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages. Unexpectedly, mutation of the m6A-binding pocket of YTHDC2 had no detectable effect on gametogenesis and mouse fertility, suggesting that YTHDC2 function is m6A-independent. Supporting this conclusion, CLIP data defined YTHDC2-binding sites on mRNA as U-rich and UG-rich motif-containing regions within 3' UTRs and coding sequences, distinct from the sites that contain m6A during spermatogenesis. Complete loss of YTHDC2 during meiotic entry did not substantially alter translation of its mRNA binding targets in whole-testis ribosome profiling assays but did modestly affect their steady-state levels. Mutation of the ATPase motif in the helicase domain of YTHDC2 did not affect meiotic entry, but it blocked meiotic prophase I progression, causing sterility. Our findings inform a model in which YTHDC2 binds transcripts independent of m6A status and regulates gene expression during multiple stages of meiosis by distinct mechanisms.


Subject(s)
Meiosis , RNA Helicases , Animals , Gene Expression Regulation , Male , Mammals/genetics , Meiosis/genetics , Mice , RNA Helicases/genetics , RNA Helicases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics
10.
Cell ; 156(3): 563-76, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24440334

ABSTRACT

The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.


Subject(s)
Cell Nucleus/metabolism , Microfilament Proteins/metabolism , Oxidoreductases/metabolism , Serum Response Factor/metabolism , Signal Transduction , Actins/metabolism , Amino Acid Sequence , Anilides/pharmacology , Animals , Benzamides/pharmacology , Cell Line , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Humans , Mice , Microfilament Proteins/analysis , Microfilament Proteins/genetics , Mixed Function Oxygenases/analysis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Nerve Growth Factor/metabolism , Neurites/metabolism , Oncogene Proteins, Fusion/metabolism , Oxidation-Reduction , Oxidoreductases/analysis , Oxidoreductases/genetics , Rats , Sequence Alignment , Trans-Activators , Transcription, Genetic , Zebrafish
11.
Nature ; 614(7947): 358-366, 2023 02.
Article in English | MEDLINE | ID: mdl-36725932

ABSTRACT

The mRNA cap structure is a major site of dynamic mRNA methylation. mRNA caps exist in either the Cap1 or Cap2 form, depending on the presence of 2'-O-methylation on the first transcribed nucleotide or both the first and second transcribed nucleotides, respectively1,2. However, the identity of Cap2-containing mRNAs and the function of Cap2 are unclear. Here we describe CLAM-Cap-seq, a method for transcriptome-wide mapping and quantification of Cap2. We find that unlike other epitranscriptomic modifications, Cap2 can occur on all mRNAs. Cap2 is formed through a slow continuous conversion of mRNAs from Cap1 to Cap2 as mRNAs age in the cytosol. As a result, Cap2 is enriched on long-lived mRNAs. Large increases in the abundance of Cap1 leads to activation of RIG-I, especially in conditions in which expression of RIG-I is increased. The methylation of Cap1 to Cap2 markedly reduces the ability of RNAs to bind to and activate RIG-I. The slow methylation rate of Cap2 allows Cap2 to accumulate on host mRNAs, yet ensures that low levels of Cap2 occur on newly expressed viral RNAs. Overall, these results reveal an immunostimulatory role for Cap1, and that Cap2 functions to reduce activation of the innate immune response.


Subject(s)
Cellular Senescence , Epigenome , Mammals , Methylation , RNA Caps , RNA, Messenger , Animals , Cytosol/metabolism , DEAD Box Protein 58 , Gene Expression Profiling , Immunity, Innate , Mammals/genetics , Mammals/metabolism , Nucleotides/chemistry , Nucleotides/genetics , Nucleotides/metabolism , Receptors, Immunologic , RNA Cap Analogs/chemistry , RNA Cap Analogs/genetics , RNA Cap Analogs/metabolism , RNA Caps/chemistry , RNA Caps/genetics , RNA Caps/metabolism , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Time Factors
12.
Nature ; 618(7967): 1078-1084, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37344591

ABSTRACT

Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.


Subject(s)
DNA , Green Fluorescent Proteins , Molecular Mimicry , Nucleic Acid Conformation , DNA/chemistry , DNA/ultrastructure , G-Quadruplexes , RNA/chemistry , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/ultrastructure , Crystallography, X-Ray , Cryoelectron Microscopy , Hydrogen Bonding , Cations, Divalent/chemistry , Cations, Monovalent/chemistry
13.
Mol Cell ; 81(10): 2064-2075.e8, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33756105

ABSTRACT

Dysregulated mTORC1 signaling alters a wide range of cellular processes, contributing to metabolic disorders and cancer. Defining the molecular details of downstream effectors is thus critical for uncovering selective therapeutic targets. We report that mTORC1 and its downstream kinase S6K enhance eIF4A/4B-mediated translation of Wilms' tumor 1-associated protein (WTAP), an adaptor for the N6-methyladenosine (m6A) RNA methyltransferase complex. This regulation is mediated by 5' UTR of WTAP mRNA that is targeted by eIF4A/4B. Single-nucleotide-resolution m6A mapping revealed that MAX dimerization protein 2 (MXD2) mRNA contains m6A, and increased m6A modification enhances its degradation. WTAP induces cMyc-MAX association by suppressing MXD2 expression, which promotes cMyc transcriptional activity and proliferation of mTORC1-activated cancer cells. These results elucidate a mechanism whereby mTORC1 stimulates oncogenic signaling via m6A RNA modification and illuminates the WTAP-MXD2-cMyc axis as a potential therapeutic target for mTORC1-driven cancers.


Subject(s)
Adenosine/analogs & derivatives , Mechanistic Target of Rapamycin Complex 1/metabolism , RNA Stability , Adenosine/metabolism , Animals , Base Sequence , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Eukaryotic Initiation Factors/metabolism , HEK293 Cells , Humans , Male , Mice , Models, Biological , Protein Biosynthesis , Proto-Oncogene Proteins c-myc/metabolism , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction
14.
Cell ; 153(6): 1252-65, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746841

ABSTRACT

Growth cones enable axons to navigate toward their targets by responding to extracellular signaling molecules. Growth-cone responses are mediated in part by the local translation of axonal messenger RNAs (mRNAs). However, the mechanisms that regulate local translation are poorly understood. Here we show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3.2 expression. These data show that local translation is regulated by mRNA stability and that NMD acts locally to influence axonal pathfinding.


Subject(s)
Axons/metabolism , Embryo, Mammalian/metabolism , Growth Cones/metabolism , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Nonsense Mediated mRNA Decay , Spinal Cord/embryology , Animals , Mice , Neurons/metabolism , Protein Biosynthesis , RNA Isoforms/metabolism , RNA Stability , Receptors, Cell Surface , Spinal Cord/metabolism
15.
Nature ; 604(7905): 362-370, 2022 04.
Article in English | MEDLINE | ID: mdl-35355019

ABSTRACT

RNA modifications are important regulators of gene expression1. In Trypanosoma brucei, transcription is polycistronic and thus most regulation happens post-transcriptionally2. N6-methyladenosine (m6A) has been detected in this parasite, but its function remains unknown3. Here we found that m6A is enriched in 342 transcripts using RNA immunoprecipitation, with an enrichment in transcripts encoding variant surface glycoproteins (VSGs). Approximately 50% of the m6A is located in the poly(A) tail of the actively expressed VSG transcripts. m6A residues are removed from the VSG poly(A) tail before deadenylation and mRNA degradation. Computational analysis revealed an association between m6A in the poly(A) tail and a 16-mer motif in the 3' untranslated region of VSG genes. Using genetic tools, we show that the 16-mer motif acts as a cis-acting motif that is required for inclusion of m6A in the poly(A) tail. Removal of this motif from the 3' untranslated region of VSG genes results in poly(A) tails lacking m6A, rapid deadenylation and mRNA degradation. To our knowledge, this is the first identification of an RNA modification in the poly(A) tail of any eukaryote, uncovering a post-transcriptional mechanism of gene regulation.


Subject(s)
RNA Processing, Post-Transcriptional , Trypanosoma brucei brucei , Variant Surface Glycoproteins, Trypanosoma , 3' Untranslated Regions/genetics , Adenosine/analogs & derivatives , Gene Expression Regulation , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , Trypanosoma brucei brucei/genetics , Variant Surface Glycoproteins, Trypanosoma/genetics
16.
Cell ; 149(7): 1635-46, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22608085

ABSTRACT

Methylation of the N(6) position of adenosine (m(6)A) is a posttranscriptional modification of RNA with poorly understood prevalence and physiological relevance. The recent discovery that FTO, an obesity risk gene, encodes an m(6)A demethylase implicates m(6)A as an important regulator of physiological processes. Here, we present a method for transcriptome-wide m(6)A localization, which combines m(6)A-specific methylated RNA immunoprecipitation with next-generation sequencing (MeRIP-Seq). We use this method to identify mRNAs of 7,676 mammalian genes that contain m(6)A, indicating that m(6)A is a common base modification of mRNA. The m(6)A modification exhibits tissue-specific regulation and is markedly increased throughout brain development. We find that m(6)A sites are enriched near stop codons and in 3' UTRs, and we uncover an association between m(6)A residues and microRNA-binding sites within 3' UTRs. These findings provide a resource for identifying transcripts that are substrates for adenosine methylation and reveal insights into the epigenetic regulation of the mammalian transcriptome.


Subject(s)
3' Untranslated Regions , Codon, Terminator , RNA Processing, Post-Transcriptional , Transcriptome , Adenosine/metabolism , Methylation , RNA, Messenger/metabolism , RNA, Untranslated/metabolism
17.
Mol Cell ; 75(3): 631-643.e8, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31279658

ABSTRACT

mRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N6-methyladenosine (m6A), found within mRNAs, and N6,2'-O-dimethyladenosine (m6Am), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult. Here, we identify and biochemically characterize PCIF1, the methyltransferase that generates m6Am. We find that PCIF1 binds and is dependent on the m7G cap. By depleting PCIF1, we generated transcriptome-wide maps that distinguish m6Am and m6A. We find that m6A and m6Am misannotations arise from mRNA isoforms with alternative transcription start sites (TSSs). These isoforms contain m6Am that maps to "internal" sites, increasing the likelihood of misannotation. We find that depleting PCIF1 does not substantially affect mRNA translation but is associated with reduced stability of a subset of m6Am-annotated mRNAs. The discovery of PCIF1 and our accurate mapping technique will facilitate future studies to characterize m6Am's function.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Nuclear Proteins/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Adenosine/genetics , Humans , Methylation , Methyltransferases/genetics , Protein Biosynthesis/genetics , Transcription Initiation Site
18.
RNA ; 30(5): 468-481, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38531646

ABSTRACT

N 6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA, and it has important functions in mRNA regulation. However, our understanding of the specific functions of m6A along with its cytosolic readers, the YTHDF proteins, has changed substantially in recent years. The original view was that different m6A sites within an mRNA could have different functions depending on which YTHDF paralog was bound to it, with bound YTHDF1 inducing translation, while bound YTHDF2 induced mRNA degradation. As a result, each YTHDF was proposed to have unique physiologic roles that arise from their unique binding properties and regulatory effects on mRNA. More recent data have called much of this into question, showing that all m6A sites bind all YTHDF proteins with equal ability, with a single primary function of all three YTHDF proteins to mediate mRNA degradation. Here, we describe the diverse technical concerns that led to the original model being questioned and the newer data that overturned this model and led to the new understanding of m6A and YTHDF function. We also discuss how any remaining questions about the functions of the YTHDF proteins can be readily resolved.


Subject(s)
Carrier Proteins , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA, Messenger/metabolism , Transcription Factors/metabolism
19.
RNA ; 30(3): 308-324, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38190635

ABSTRACT

m6A has different stoichiometry at different positions in different mRNAs. However, the exact stoichiometry of m6A is difficult to measure. Here, we describe SCARPET (site-specific cleavage and radioactive-labeling followed by purification, exonuclease digestion, and thin-layer chromatography), a simple and streamlined biochemical assay for quantifying m6A at any specific site in any mRNA. SCARPET involves a site-specific cleavage of mRNA immediately 5' of an adenosine site in an mRNA. This site is radiolabeled with 32P, and after a series of steps to purify the RNA and to remove nonspecific signals, the nucleotide is resolved by TLC to visualize A and m6A at this site. Quantification of these spots reveals the m6A stoichiometry at the site of interest. SCARPET can be applied to poly(A)-enriched RNA, or preferably purified mRNA, which produces more accurate m6A stoichiometry measurements. We show that sample processing steps of SCARPET can be performed in a single day, and results in a specific and accurate measurement of m6A stoichiometry at specific sites in mRNA. Using SCARPET, we measure exact m6A stoichiometries in specific mRNAs and show that Zika genomic RNA lacks m6A at previously mapped sites. SCARPET will be useful for testing specific sites for their m6A stoichiometry and to assess how m6A stoichiometry changes in different conditions and cellular contexts.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Adenosine/genetics , RNA , RNA, Messenger/metabolism , Nucleotides , RNA Processing, Post-Transcriptional , Zika Virus/genetics
20.
Nat Chem Biol ; 20(3): 302-313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37973889

ABSTRACT

Proteins and RNA can phase separate from the aqueous cellular environment to form subcellular compartments called condensates. This process results in a protein-RNA mixture that is chemically different from the surrounding aqueous phase. Here, we use mass spectrometry to characterize the metabolomes of condensates. To test this, we prepared mixtures of phase-separated proteins and extracts of cellular metabolites and identified metabolites enriched in the condensate phase. Among the most condensate-enriched metabolites were phospholipids, due primarily to the hydrophobicity of their fatty acyl moieties. We found that phospholipids can alter the number and size of phase-separated condensates and in some cases alter their morphology. Finally, we found that phospholipids partition into a diverse set of endogenous condensates as well as artificial condensates expressed in cells. Overall, these data show that many condensates are protein-RNA-lipid mixtures with chemical microenvironments that are ideally suited to facilitate phospholipid biology and signaling.


Subject(s)
Biomolecular Condensates , Metabolome , Mass Spectrometry , Phospholipids , RNA
SELECTION OF CITATIONS
SEARCH DETAIL