Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
BMC Infect Dis ; 23(1): 79, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750921

ABSTRACT

BACKGROUND: Compared to the abundance of clinical and genomic information available on patients hospitalised with COVID-19 disease from high-income countries, there is a paucity of data from low-income countries. Our aim was to explore the relationship between viral lineage and patient outcome. METHODS: We enrolled a prospective observational cohort of adult patients hospitalised with PCR-confirmed COVID-19 disease between July 2020 and March 2022 from Blantyre, Malawi, covering four waves of SARS-CoV-2 infections. Clinical and diagnostic data were collected using an adapted ISARIC clinical characterization protocol for COVID-19. SARS-CoV-2 isolates were sequenced using the MinION™ in Blantyre. RESULTS: We enrolled 314 patients, good quality sequencing data was available for 55 patients. The sequencing data showed that 8 of 11 participants recruited in wave one had B.1 infections, 6/6 in wave two had Beta, 25/26 in wave three had Delta and 11/12 in wave four had Omicron. Patients infected during the Delta and Omicron waves reported fewer underlying chronic conditions and a shorter time to presentation. Significantly fewer patients required oxygen (22.7% [17/75] vs. 58.6% [140/239], p < 0.001) and steroids (38.7% [29/75] vs. 70.3% [167/239], p < 0.001) in the Omicron wave compared with the other waves. Multivariable logistic-regression demonstrated a trend toward increased mortality in the Delta wave (OR 4.99 [95% CI 1.0-25.0 p = 0.05) compared to the first wave of infection. CONCLUSIONS: Our data show that each wave of patients hospitalised with SARS-CoV-2 was infected with a distinct viral variant. The clinical data suggests that patients with severe COVID-19 disease were more likely to die during the Delta wave.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Malawi , Cohort Studies , Data Accuracy
2.
Proc Natl Acad Sci U S A ; 117(34): 20717-20728, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32788367

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate T lymphocytes activated by bacteria that produce vitamin B2 metabolites. Mouse models of infection have demonstrated a role for MAIT cells in antimicrobial defense. However, proposed protective roles of MAIT cells in human infections remain unproven and clinical conditions associated with selective absence of MAIT cells have not been identified. We report that typhoidal and nontyphoidal Salmonella enterica strains activate MAIT cells. However, S. Typhimurium sequence type 313 (ST313) lineage 2 strains, which are responsible for the burden of multidrug-resistant nontyphoidal invasive disease in Africa, escape MAIT cell recognition through overexpression of ribB This bacterial gene encodes the 4-dihydroxy-2-butanone-4-phosphate synthase enzyme of the riboflavin biosynthetic pathway. The MAIT cell-specific phenotype did not extend to other innate lymphocytes. We propose that ribB overexpression is an evolved trait that facilitates evasion from immune recognition by MAIT cells and contributes to the invasive pathogenesis of S. Typhimurium ST313 lineage 2.


Subject(s)
Mucosal-Associated Invariant T Cells/immunology , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Africa South of the Sahara , Anti-Bacterial Agents , Diarrhea/microbiology , Diarrhea/mortality , Humans , Immune Evasion/genetics , Immune Evasion/physiology , Mucosal-Associated Invariant T Cells/metabolism , Salmonella Infections/immunology , Salmonella typhimurium/pathogenicity
3.
J Infect Dis ; 226(7): 1243-1255, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35403683

ABSTRACT

BACKGROUND: Human immunodeficiency virus-exposed uninfected (HEU) infants are a rapidly expanding population in sub-Saharan Africa and are highly susceptible to encapsulated bacterial disease in the first year of life. The mechanism of this increased risk is still poorly understood. We investigated whether human immunodeficiency virus (HIV)-exposure dysregulates HEU immunity, vaccine-antibody production, and human herpes virus amplify this effect. METHODS: Thirty-four HIV-infected and 44 HIV-uninfected pregnant women were recruited into the birth cohort and observed up to 6 weeks of age; and then a subsequent 43 HIV-infected and 61 HIV-uninfected mother-infant pairs were recruited into a longitudinal infant cohort at either: 5-7 to 14-15; or 14-15 to 18-23 weeks of age. We compared monocyte function, innate and adaptive immune cell phenotype, and vaccine-induced antibody responses between HEU and HIV-unexposed uninfected (HU) infants. RESULTS: We demonstrate (1) altered monocyte phagosomal function and B-cell subset homeostasis and (2) lower vaccine-induced anti-Haemophilus influenzae type b (Hib) and anti-tetanus toxoid immunoglobulin G titers in HEU compared with HU infants. Human herpes virus infection was similar between HEU and HU infants. CONCLUSIONS: In the era of antiretroviral therapy-mediated viral suppression, HIV exposure may dysregulate monocyte and B-cell function, during the vulnerable period of immune maturation. This may contribute to the high rates of invasive bacterial disease and pneumonia in HEU infants.


Subject(s)
HIV Infections , Monocytes , Female , HIV , Humans , Immunoglobulin G , Infant , Phenotype , Pregnancy , Tetanus Toxoid
4.
BMC Med ; 20(1): 167, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501853

ABSTRACT

In December 2019, a new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and associated disease, coronavirus disease 2019 (COVID-19), was identified in China. This virus spread quickly and in March, 2020, it was declared a pandemic. Scientists predicted the worst scenario to occur in Africa since it was the least developed of the continents in terms of human development index, lagged behind others in achievement of the United Nations sustainable development goals (SDGs), has inadequate resources for provision of social services, and has many fragile states. In addition, there were relatively few research reporting findings on COVID-19 in Africa. On the contrary, the more developed countries reported higher disease incidences and mortality rates. However, for Africa, the earlier predictions and modelling into COVID-19 incidence and mortality did not fit into the reality. Therefore, the main objective of this forum is to bring together infectious diseases and public health experts to give an overview of COVID-19 in Africa and share their thoughts and opinions on why Africa behaved the way it did. Furthermore, the experts highlight what needs to be done to support Africa to consolidate the status quo and overcome the negative effects of COVID-19 so as to accelerate attainment of the SDGs.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Humans , Pandemics , Public Health , SARS-CoV-2
5.
BMC Med ; 20(1): 128, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346184

ABSTRACT

BACKGROUND: Binding and neutralising anti-Spike antibodies play a key role in immune defence against SARS-CoV-2 infection. Since it is known that antibodies wane with time and new immune-evasive variants are emerging, we aimed to assess the dynamics of anti-Spike antibodies in an African adult population with prior SARS-CoV-2 infection and to determine the effect of subsequent COVID-19 vaccination. METHODS: Using a prospective cohort design, we recruited adults with prior laboratory-confirmed mild/moderate COVID-19 in Blantyre, Malawi, and followed them up for 270 days (n = 52). A subset of whom subsequently received a single dose of the AstraZeneca COVID-19 vaccine (ChAdOx nCov-19) (n = 12). We measured the serum concentrations of anti-Spike and receptor-binding domain (RBD) IgG antibodies using a Luminex-based assay. Anti-RBD antibody cross-reactivity across SARS-CoV-2 variants of concern (VOC) was measured using a haemagglutination test. A pseudovirus neutralisation assay was used to measure neutralisation titres across VOCs. Ordinary or repeated measures one-way ANOVA was used to compare log10 transformed data, with p value adjusted for multiple comparison using Sídák's or Holm-Sídák's test. RESULTS: We show that neutralising antibodies wane within 6 months post mild/moderate SARS-CoV-2 infection (30-60 days vs. 210-270 days; Log ID50 6.8 vs. 5.3, p = 0.0093). High levels of binding anti-Spike or anti-RBD antibodies in convalescent serum were associated with potent neutralisation activity against the homologous infecting strain (p < 0.0001). A single dose of the AstraZeneca COVID-19 vaccine following mild/moderate SARS-CoV-2 infection induced a 2 to 3-fold increase in anti-Spike and -RBD IgG levels 30 days post-vaccination (both, p < 0.0001). The anti-RBD IgG antibodies from these vaccinated individuals were broadly cross-reactive against multiple VOCs and had neutralisation potency against original D614G, beta, and delta variants. CONCLUSIONS: These findings show that the AstraZeneca COVID-19 vaccine is an effective booster for waning cross-variant antibody immunity after initial priming with SARS-CoV-2 infection. The potency of hybrid immunity and its potential to maximise the benefits of COVID-19 vaccines needs to be taken into consideration when formulating vaccination policies in sub-Saharan Africa, where there is still limited access to vaccine doses.


Subject(s)
COVID-19 , Viral Vaccines , Antibody Formation , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines , Humans , Immunization, Passive , Prospective Studies , SARS-CoV-2 , Viral Vaccines/pharmacology , COVID-19 Serotherapy
6.
Proc Natl Acad Sci U S A ; 116(15): 7431-7438, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30918127

ABSTRACT

Long noncoding RNAs (lncRNAs) impart significant regulatory functions in a diverse array of biological pathways and manipulation of these RNAs provides an important avenue to modulate such pathways, particularly in disease. Our knowledge about lncRNAs' role in determination of cellular fate during HIV-1 infection remains sparse. Here, we have identified the impact of the lncRNA SAF in regulating apoptotic effector caspases in macrophages, a long-lived cellular reservoir of HIV-1, that are largely immune to virus-induced cell death. Expression of SAF is significantly up-regulated in HIV-1-infected human monocyte-derived macrophages (MDM) compared with bystander and virus-nonexposed cells. A similar enhancement in SAF RNA expression is also detected in the HIV-1-infected airway macrophages obtained by bronchoalveolar lavage of HIV-1-infected individuals. Down-regulation of SAF with siRNA treatment increases caspase-3/7 activity levels in virus-infected MDMs. This induction of apoptotic caspases occurs exclusively in HIV-1-infected macrophages and not in bystander cells, leading to a significant reduction in HIV-1 replication and overall viral burden in the macrophage culture. This study identifies targeting of the lncRNA SAF as a potential means to specifically induce cell death in HIV-1-infected macrophages.


Subject(s)
Apoptosis , Caspase 3/metabolism , Caspase 7/metabolism , HIV Infections/metabolism , HIV-1/physiology , Macrophages/metabolism , RNA, Long Noncoding/metabolism , Virus Replication/physiology , Caspase 3/genetics , Caspase 7/genetics , HIV Infections/genetics , HIV Infections/pathology , Humans , Macrophages/pathology , Macrophages/virology , RNA, Long Noncoding/genetics
7.
BMC Med ; 19(1): 303, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34794434

ABSTRACT

BACKGROUND: By August 2021, the COVID-19 pandemic has been less severe in sub-Saharan Africa than elsewhere. In Malawi, there have been three subsequent epidemic waves. We therefore aimed to describe the dynamics of SARS-CoV-2 exposure in Malawi. METHODS: We measured the seroprevalence of anti-SARS-CoV-2 antibodies amongst randomly selected blood transfusion donor sera in Malawi from January 2020 to July 2021 using a cross-sectional study design. In a subset, we also assessed in vitro neutralisation against the original variant (D614G WT) and the Beta variant. RESULTS: A total of 5085 samples were selected from the blood donor database, of which 4075 (80.1%) were aged 20-49 years. Of the total, 1401 were seropositive. After adjustment for assay characteristics and applying population weights, seropositivity reached peaks in October 2020 (18.5%) and May 2021 (64.9%) reflecting the first two epidemic waves. Unlike the first wave, both urban and rural areas had high seropositivity in the second wave, Balaka (rural, 66.2%, April 2021), Blantyre (urban, 75.6%, May 2021), Lilongwe (urban, 78.0%, May 2021), and Mzuzu (urban, 74.6%, April 2021). Blantyre and Mzuzu also show indications of the start of a third pandemic wave with seroprevalence picking up again in July 2021 (Blantyre, 81.7%; Mzuzu, 71.0%). More first wave sera showed in vitro neutralisation activity against the original variant (78% [7/9]) than the beta variant (22% [2/9]), while more second wave sera showed neutralisation activity against the beta variant (75% [12/16]) than the original variant (63% [10/16]). CONCLUSION: The findings confirm extensive SARS-CoV-2 exposure in Malawi over two epidemic waves with likely poor cross-protection to reinfection from the first on the second wave. The dynamics of SARS-CoV-2 exposure will therefore need to be taken into account in the formulation of the COVID-19 vaccination policy in Malawi and across the region. Future studies should use an adequate sample size for the assessment of neutralisation activity across a panel of SARS-CoV-2 variants of concern/interest to estimate community immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Blood Donors , COVID-19 Vaccines , Cross-Sectional Studies , Humans , Pandemics , Seroepidemiologic Studies
8.
Curr Opin Infect Dis ; 34(1): 25-33, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33315751

ABSTRACT

PURPOSE OF REVIEW: People living with HIV (PLWH) are commonly coinfected with Mycobacterium tuberculosis, particularly in high-transmission resource-limited regions. Despite expanded access to antiretroviral therapy and tuberculosis (TB) treatment, TB remains the leading cause of death among PLWH. This review discusses recent advances in the management of TB in PLWH and examines emerging therapeutic approaches to improve outcomes of HIV-associated TB. RECENT FINDINGS: Three recent key developments have transformed the management of HIV-associated TB. First, the scaling-up of rapid point-of-care urine-based tests for screening and diagnosis of TB in PLWH has facilitated early case detection and treatment. Second, increasing the availability of potent new and repurposed drugs to treat drug-resistant TB has generated optimism about the treatment and outcome of multidrug-resistant and extensively drug-resistant TB. Third, expanded access to the integrase inhibitor dolutegravir to treat HIV in resource-limited regions has simplified the management of TB/HIV coinfected patients and minimized serious adverse events. SUMMARY: While it is unequivocal that substantial progress has been made in early detection and treatment of HIV-associated TB, significant therapeutic challenges persist. To optimize the management and outcomes of TB in HIV, therapeutic approaches that target the pathogen as well as enhance the host response should be explored.


Subject(s)
Antitubercular Agents/therapeutic use , HIV Infections/complications , Tuberculosis/drug therapy , Tuberculosis/etiology , Anti-HIV Agents/therapeutic use , Coinfection/drug therapy , Coinfection/microbiology , Coinfection/virology , HIV Infections/drug therapy , HIV Infections/virology , Humans , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology
9.
Am J Respir Crit Care Med ; 201(3): 335-347, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31626559

ABSTRACT

Rationale: Pneumococcal pneumonia remains a global health problem. Colonization of the nasopharynx with Streptococcus pneumoniae (Spn), although a prerequisite of infection, is the main source of exposure and immunological boosting in children and adults. However, our knowledge of how nasal colonization impacts on the lung cells, especially on the predominant alveolar macrophage (AM) population, is limited.Objectives: Using a controlled human infection model to achieve nasal colonization with 6B serotype, we investigated the effect of Spn colonization on lung cells.Methods: We collected BAL from healthy pneumococcal-challenged participants aged 18-49 years. Confocal microscopy and molecular and classical microbiology were used to investigate microaspiration and pneumococcal presence in the lower airways. AM opsonophagocytic capacity was assessed by functional assays in vitro, whereas flow cytometry and transcriptomic analysis were used to assess further changes on the lung cellular populations.Measurements and Main Results: AMs from Spn-colonized individuals exhibited increased opsonophagocytosis to pneumococcus (11.4% median increase) for approximately 3 months after experimental pneumococcal colonization. AMs also had increased responses against other bacterial pathogens. Pneumococcal DNA detected in the BAL samples of Spn-colonized individuals were positively correlated with nasal pneumococcal density (r = 0.71; P = 0.029). Similarly, AM-heightened opsonophagocytic capacity was correlated with nasopharyngeal pneumococcal density (r = 0.61, P = 0.025).Conclusions: Our findings demonstrate that nasal colonization with pneumococcus and microaspiration prime AMs, leading to brisker responsiveness to both pneumococcus and unrelated bacterial pathogens. The relative abundance of AMs in the alveolar spaces, alongside their potential for nonspecific protection, render them an attractive target for novel vaccines.


Subject(s)
Macrophages, Alveolar/immunology , Nasopharynx/microbiology , Nose/microbiology , Streptococcus pneumoniae/isolation & purification , Adolescent , Adult , Bacteria/immunology , Humans , Middle Aged , Respiratory Aspiration , Young Adult
10.
Respir Res ; 19(1): 66, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29669565

ABSTRACT

Alveolar macrophages (AM) are critical to the homeostasis of the inflammatory environment in the lung. Differential expression of surface markers classifies macrophages to either classically (M1) or alternatively activated (M2). We investigated the phenotype of human alveolar macrophages (AM) in adults living in two different geographical locations: UK and Malawi. We show that the majority of AM express high levels of M1 and M2 markers simultaneously, with the M1/M2 phenotype being stable in individuals from different geographical locations. The combined M1/M2 features confer to AM a hybrid phenotype, which does not fit the classic macrophage classification. This hybrid phenotype may confer to alveolar macrophages an ability to quickly switch between M1 or M2 associated functions allowing for appropriate responses to stimuli and tissue environment.


Subject(s)
Antigens, CD/biosynthesis , Macrophage Activation/physiology , Macrophages, Alveolar/metabolism , Phenotype , Adolescent , Adult , Antigens, CD/genetics , Biomarkers/metabolism , Cohort Studies , Gene Expression , Humans , Macrophages, Alveolar/immunology , Middle Aged , United Kingdom , Young Adult
11.
J Infect Dis ; 213(11): 1809-19, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26810369

ABSTRACT

BACKGROUND: Oral vaccination with live-attenuated Salmonella Typhi strain Ty21a is modestly efficacious, but the mechanisms of protection are currently unknown. While humoral and cellular immune responses are well described in peripheral blood, the cellular response at the intestinal mucosa has never been directly assessed. METHODS: We vaccinated healthy adults with Ty21a and assessed humoral and cellular immunity in vaccinated volunteers and controls after 18 days. Immunoglobulin levels were assessed in peripheral blood by an enzyme-linked immunosorbent assay. Cellular responses were assessed in peripheral blood and at the duodenal and colonic mucosa by flow cytometry. RESULTS: We demonstrate the generation of Ty21a-responsive and heterologous influenza virus-responsive CD4(+) and CD8(+) T cells at the duodenal mucosa. All duodenal responses were consistently correlated, and no responses were observed at the colonic mucosa. Peripheral anti-lipopolysaccharide immunoglobulin G and immunoglobulin A responses were significantly correlated with duodenal responses. The assessment of integrin ß7 expression intensity among peripheral and duodenal T-cell subsets revealed varied capacities for mucosal homing and residence. CONCLUSIONS: The breadth of duodenal cellular responses was not reflected peripherally. The direct evaluation of mucosal immune defense may yield functional correlates of protection and could provide insight into mechanisms that may be manipulated to enhance vaccine immunogenicity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Intestinal Mucosa/immunology , Polysaccharides, Bacterial/immunology , Salmonella typhi/immunology , Typhoid-Paratyphoid Vaccines/immunology , Administration, Oral , Adult , Antibodies, Bacterial/immunology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , Male , Orthomyxoviridae/immunology , Vaccines, Attenuated/immunology , Young Adult
12.
Retrovirology ; 13(1): 55, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27515378

ABSTRACT

8E5/LAV cells harbor a single HIV provirus, and are used frequently to generate standards for HIV genome quantification. Using flow cytometry-based in situ mRNA hybridization validated by qPCR, we find that different batches of 8E5 cells contain varying numbers of cells lacking viral mRNA and/or viral genomes. These findings raise concerns for studies employing 8E5 cells for quantitation, and highlight the value of mRNA FISH and flow cytometry in the detection and enumeration of HIV-positive cells.


Subject(s)
DNA, Viral/genetics , HIV-1/genetics , Proviruses/genetics , RNA, Viral/analysis , Transcription Factors/metabolism , Transcription, Genetic , Cell Line, Tumor , DNA, Viral/analysis , Flow Cytometry , Genome, Viral , Humans , In Situ Hybridization, Fluorescence , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Real-Time Polymerase Chain Reaction
13.
Malar J ; 15(1): 264, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27165269

ABSTRACT

BACKGROUND: Cotrimoxazole (CTX) prophylaxis, recommended in HIV-exposed uninfected (HEU) children primarily against HIV-related opportunistic infections, has been shown to have some efficacy against Plasmodium falciparum malaria. The effects of CTX prophylaxis on the acquisition of P. falciparum antigen specific CD4(+) T cells-mediated immunity in HEU children is still not fully understood. METHODS: Peripheral blood was collected from HEU and HIV-unexposed uninfected (HUU) children at 6, 12 and 18 months of age. Proportion of CD4(+) T cells subsets were determined by immunophenotyping. P. falciparum antigen-specific CD4(+) T cells responses were measured by intracellular cytokine staining assay. RESULTS: There were no differences in the proportions of naïve, effector and memory CD4(+) T cell subsets between HEU and HUU children at all ages. There was a trend showing acquisition of P. falciparum-specific IFN-γ and TNF-producing CD4(+) T cells with age in both HUU and HEU children. There was, however, lower frequency of P. falciparum-specific IFN-γ-producing CD4(+) T cells in HEU compared to HUU at 6 and 12 months, which normalized 6 months after stopping CTX prophylaxis. CONCLUSION: The results demonstrate that there is delayed acquisition of P. falciparum-specific IFN-γ-producing CD4(+) T cells in HEU children on daily cotrimoxazole prophylaxis, which is evident at 6 and 12 months of age in comparison to HUU age-matched controls. However, whether this delayed acquisition of P. falciparum-specific IFN-γ-producing CD4(+) T cells leads to higher risk to malaria disease remains unknown and warrants further investigation.


Subject(s)
Antimalarials/administration & dosage , CD4-Positive T-Lymphocytes/immunology , Chemoprevention/methods , Malaria, Falciparum/immunology , Maternal Exposure , Plasmodium falciparum/immunology , Trimethoprim, Sulfamethoxazole Drug Combination/administration & dosage , Cytokines/analysis , Female , HIV Infections/immunology , Humans , Immunophenotyping , Infant , Malawi , Male , Pregnancy
14.
BMC Immunol ; 16: 50, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26315539

ABSTRACT

BACKGROUND: As a result of successful PMTCT programs, children born from HIV-infected mothers are now effectively protected from contracting the infection. However, it is not well known whether in utero exposure to the virus and the subsequent exposure to Cotrimoxazole (CTX) prophylaxis affect the cell mediated immune system of the children. This observational prospective study was aimed at determining how CD4(+) T, CD8(+) T and B cell subsets varied in HIV-exposed but uninfected (HEU) children at different ages. METHODS: We recruited HEU and HIV-unexposed and uninfected (HUU) children from 6 months of age and followed them up until they were 18 months old. HEU children received daily CTX prophylaxis beginning at 6 weeks of age until when 12 months of age. Venous blood samples were collected 6 monthly and analysed for different subsets of CD8(+) T, B cells and totalCD4(+) T cells. RESULTS: At 6 months of age, HEU children had a lower percentage of total CD4(+) T cells compared to HUU children and a lower proportion of naïve CD8(+) T cells but higher percentage of effector memory CD8(+) T cells compared to HUU children. HEU and HUU children had similar proportions of all B cell subsets at all ages. CONCLUSIONS: The study showed that the subtle variations in CD4(+) and CD8(+) T cell subsets observed at 6 months do not last beyond 12 months of age, suggesting that HEU children have a robust cell-mediated immune system during first year of life. TRIAL REGISTRATION: This article report is not based on results of a controlled health-care intervention.


Subject(s)
B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , HIV Infections/drug therapy , Humans , Infant , Lymphocyte Count , Malawi
15.
PLoS Pathog ; 9(3): e1003274, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23555269

ABSTRACT

Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of pneumococcal colonisation show that IL-17A-secreting CD4(+) T-cells (Th-17 cells) are essential for clearance of pneumococci from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4(+) T-cells have not been described in the adult human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection. We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and phenotype of cognate CD4(+) T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency of cognate IL-17A(+) CD4(+) T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF(+)/IL-17A(+) co-producing CD4(+) memory T-cells (p<0.01); IFNγ(+) CD4(+) memory T-cells were not significantly increased following carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the presence of cognate CD4(+) memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = -0.9, p = 0.017) but not RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4(+) memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised to enhance vaccine efficacy to protect the lung against pneumonia.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Carrier State/immunology , Interleukin-17/immunology , Lung/immunology , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology , Adolescent , Adult , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Carrier State/microbiology , Cell Count , Female , Humans , Immunologic Memory/immunology , Lung/microbiology , Male , Nasopharynx/microbiology , Pneumococcal Infections/microbiology , Pneumococcal Infections/transmission , Streptococcus pneumoniae/isolation & purification , Young Adult
16.
Am J Respir Crit Care Med ; 190(8): 938-47, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25225948

ABSTRACT

RATIONALE: HIV-infected persons on antiretroviral therapy (ART) remain at higher risk of pulmonary tuberculosis (TB) than HIV-uninfected individuals. This increased susceptibility may be caused by impairment of alveolar macrophage (AM) function and/or mycobacteria-specific alveolar CD4(+) T-cell responses observed in HIV-infected ART-naive adults. OBJECTIVES: To determine whether ART was associated with improvement in both AM function, assessed by phagosomal proteolysis, and alveolar CD4(+) T-cell responses to Mycobacterium in HIV-infected individuals. METHODS: Peripheral blood was drawn and bronchoalveolar lavage (BAL) performed on healthy, 35 HIV-uninfected, 25 HIV-infected ART-naive, and 50 HIV-infected ART-treated asymptomatic adults. Phagosomal proteolysis of AM was assessed with fluorogenic beads. Mycobacteria-specific CD4(+) T-cell responses were measured by intracellular cytokine staining. MEASUREMENTS AND MAIN RESULTS: HIV-infected adults on ART exhibited lower plasma HIV viral load and higher blood CD4(+) T-cell count than ART-naive adults. AM proteolysis and total mycobacteria-specific Th1 CD4(+) T-cell responses in individuals on ART for greater than or equal to 4 years were similar to HIV-uninfected control subjects but those on ART for less than 4 years had impaired responses. Total influenza-specific alveolar Th1 CD4(+) T-cell responses were intact in all individuals receiving ART. In contrast, BAL and blood mycobacteria-specific polyfunctional CD4(+) T-cell responses were impaired in adults on ART irrespective of duration. CONCLUSIONS: AM and mycobacteria-specific alveolar CD4(+) T-cell responses in HIV-infected adults on ART for less than 4 years are impaired and may partly explain the high risk of TB in HIV-infected individuals on ART. Strategies to augment ART to improve lung immune cell function and reduce the high incidence of TB in HIV-infected adults who initiate ART should be investigated.


Subject(s)
Anti-HIV Agents/adverse effects , CD4-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1 , Macrophages, Alveolar/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/etiology , Adolescent , Adult , Anti-HIV Agents/therapeutic use , Asymptomatic Infections , CD4 Lymphocyte Count , Case-Control Studies , Cross-Sectional Studies , Drug Therapy, Combination , Female , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/microbiology , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , Young Adult
17.
PLoS Pathog ; 8(4): e1002622, 2012.
Article in English | MEDLINE | ID: mdl-22496648

ABSTRACT

Infectious challenge of the human nasal mucosa elicits immune responses that determine the fate of the host-bacterial interaction; leading either to clearance, colonisation and/or disease. Persistent antigenic exposure from pneumococcal colonisation can induce both humoral and cellular defences that are protective against carriage and disease. We challenged healthy adults intra-nasally with live 23F or 6B Streptococcus pneumoniae in two sequential cohorts and collected nasal wash, bronchoalveolar lavage (BAL) and blood before and 6 weeks after challenge. We hypothesised that both cohorts would successfully become colonised but this did not occur except for one volunteer. The effect of bacterial challenge without colonisation in healthy adults has not been previously assessed. We measured the antigen-specific humoral and cellular immune responses in challenged but not colonised volunteers by ELISA and Flow Cytometry. Antigen-specific responses were seen in each compartment both before and after bacterial challenge for both cohorts. Antigen-specific IgG and IgA levels were significantly elevated in nasal wash 6 weeks after challenge compared to baseline. Immunoglobulin responses to pneumococci were directed towards various protein targets but not capsular polysaccharide. 23F but not 6B challenge elevated IgG anti-PspA in BAL. Serum immunoglobulins did not increase in response to challenge. In neither challenge cohort was there any alteration in the frequencies of TNF, IL-17 or IFNγ producing CD4 T cells before or after challenge in BAL or blood. We show that simple, low dose mucosal exposure with pneumococci may immunise mucosal surfaces by augmenting anti-protein immunoglobulin responses; but not capsular or cellular responses. We hypothesise that mucosal exposure alone may not replicate the systemic immunising effect of experimental or natural carriage in humans.


Subject(s)
Antibodies, Bacterial/immunology , Immunity, Cellular , Immunity, Humoral , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Nasal Mucosa/immunology , Streptococcus pneumoniae/immunology , Administration, Intranasal , Adolescent , Adult , Antibodies, Bacterial/blood , Bronchoalveolar Lavage , CD4-Positive T-Lymphocytes/immunology , Cohort Studies , Cytokines/blood , Cytokines/immunology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Time Factors
18.
Sci Rep ; 13(1): 9001, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268634

ABSTRACT

Strong CD4+ T cell-mediated immune protection following rotavirus infection has been observed in animal models, but its relevance in humans remains unclear. Here, we characterized acute and convalescent CD4+ T cell responses in children who were hospitalized with rotavirus-positive and rotavirus-negative diarrhoea in Blantyre, Malawi. Children presenting with laboratory-confirmed rotavirus infection had higher proportions of effector and central memory T helper 2 cells during acute infection i.e., at disease presentation compared to convalescence, 28 days post-infection defined by a follow-up 28 days after acute infection. However, circulating cytokine-producing (IFN-γ and/or TNF-α) rotavirus-specific VP6-specific CD4+ T cells were rarely detectable in children with rotavirus infection at both acute and convalescent stages. Moreover, following whole blood mitogenic stimulation, the responding CD4+ T cells were predominantly non-cytokine producers of IFN-γ and/or TNF-α. Our findings demonstrate limited induction of anti-viral IFN-γ and/or TNF-α-producing CD4+ T cells in rotavirus-vaccinated Malawian children following the development of laboratory-confirmed rotavirus infection.


Subject(s)
Rotavirus Infections , Rotavirus , Child , Animals , Humans , Rotavirus Infections/prevention & control , Tumor Necrosis Factor-alpha , T-Lymphocyte Subsets , Cytokines , CD4-Positive T-Lymphocytes
19.
Nat Commun ; 14(1): 888, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36797259

ABSTRACT

Invasive pneumococcal disease (IPD) risk increases with age for older adults whereas the population size benefiting from pneumococcal vaccines and robustness of immunogenic response to vaccination decline. We estimate how demographics, vaccine efficacy/effectiveness (VE), and waning VE impact on optimal age for a single-dose pneumococcal vaccination. Age- and vaccine-serotype-specific IPD cases from routine surveillance of adults ≥ 55 years old (y), ≥ 4-years after infant-pneumococcal vaccine introduction and before 2020, and VE data from prior studies were used to estimate IPD incidence and waning VE which were then combined in a cohort model of vaccine impact. In Brazil, Malawi, South Africa and England 51, 51, 54 and 39% of adults older than 55 y were younger than 65 years old, with a smaller share of annual IPD cases reported among < 65 years old in England (4,657; 20%) than Brazil (186; 45%), Malawi (4; 63%), or South Africa (134, 48%). Vaccination at 55 years in Brazil, Malawi, and South Africa, and at 70 years in England had the greatest potential for IPD prevention. Here, we show that in low/middle-income countries, pneumococcal vaccines may prevent a substantial proportion of residual IPD burden if administered earlier in adulthood than is typical in high-income countries.


Subject(s)
Pneumococcal Infections , Infant , Humans , Aged , Middle Aged , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Vaccination , Serogroup , Incidence
20.
Virus Evol ; 9(1): vead030, 2023.
Article in English | MEDLINE | ID: mdl-37305707

ABSTRACT

G3 rotaviruses rank among the most common rotavirus strains worldwide in humans and animals. However, despite a robust long-term rotavirus surveillance system from 1997 at Queen Elizabeth Central Hospital in Blantyre, Malawi, these strains were only detected from 1997 to 1999 and then disappeared and re-emerged in 2017, 5 years after the introduction of the Rotarix rotavirus vaccine. Here, we analysed representative twenty-seven whole genome sequences (G3P[4], n = 20; G3P[6], n = 1; and G3P[8], n = 6) randomly selected each month between November 2017 and August 2019 to understand how G3 strains re-emerged in Malawi. We found four genotype constellations that were associated with the emergent G3 strains and co-circulated in Malawi post-Rotarix vaccine introduction: G3P[4] and G3P[6] strains with the DS-1-like genetic backbone genes (G3-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2 and G3-P[6]-I2-R2-C2-M2-A2-N2-T2-E2-H2), G3P[8] strains with the Wa-like genetic backbone genes (G3-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), and reassortant G3P[4] strains consisting of the DS-1-like genetic backbone genes and a Wa-like NSP2 (N1) gene (G3-P[4]-I2-R2-C2-M2-A2-N1-T2-E2-H2). Time-resolved phylogenetic trees demonstrated that the most recent common ancestor for each ribonucleic acid (RNA) segment of the emergent G3 strains was between 1996 and 2012, possibly through introductions from outside the country due to the limited genetic similarity with G3 strains which circulated before their disappearance in the late 1990s. Further genomic analysis revealed that the reassortant DS-1-like G3P[4] strains acquired a Wa-like NSP2 genome segment (N1 genotype) through intergenogroup reassortment; an artiodactyl-like VP3 through intergenogroup interspecies reassortment; and VP6, NSP1, and NSP4 segments through intragenogroup reassortment likely before importation into Malawi. Additionally, the emergent G3 strains contain amino acid substitutions within the antigenic regions of the VP4 proteins which could potentially impact the binding of rotavirus vaccine-induced antibodies. Altogether, our findings show that multiple strains with either Wa-like or DS-1-like genotype constellations have driven the re-emergence of G3 strains. The findings also highlight the role of human mobility and genome reassortment events in the cross-border dissemination and evolution of rotavirus strains in Malawi necessitating the need for long-term genomic surveillance of rotavirus in high disease-burden settings to inform disease prevention and control.

SELECTION OF CITATIONS
SEARCH DETAIL