Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Cancer Res ; 6(10): 1621-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18922977

ABSTRACT

Poly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity. The extent of cytotoxicity correlates with the level of double-stranded DNA breaks as indicated by gammaH2AX levels. In synchronized cells, damaging DNA with temozolomide in the presence of ABT-888 during the S phase generated high levels of double-stranded breaks, presumably because the single-stranded DNA breaks resulting from the cleavage of the methylated nucleotides were converted into double-stranded breaks through DNA replication. As a result, treatment of temozolomide and ABT-888 during the S phase leads to higher levels of cytotoxicity. ABT-888 inhibits poly(ADP-ribose) formation in vivo and enhances tumor growth inhibition by temozolomide in multiple models. ABT-888 is well tolerated in animal models. ABT-888 is currently in clinical trials in combination with temozolomide.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Single-Stranded/drug effects , Dacarbazine/analogs & derivatives , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Cell Death/drug effects , Cell Line, Tumor , DNA Repair/drug effects , DNA Replication/drug effects , Dacarbazine/pharmacology , Disease Models, Animal , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Mice , Rats , Temozolomide
2.
Bioorg Med Chem Lett ; 18(14): 3955-8, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18586490

ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) play significant roles in various cellular functions including DNA repair and control of RNA transcription. PARP inhibitors have been demonstrated to potentiate the effect of cytotoxic agents or radiation in a number of animal tumor models. Utilizing a benzimidazole carboxamide scaffold in which the amide forms a key intramolecular hydrogen bond for optimal interaction with the enzyme, we have identified a novel series of PARP inhibitors containing a quaternary methylene-amino substituent at the C-2 position of the benzimidazole. Geminal dimethyl analogs at the methylene-amino substituent were typically more potent than mono-methyl derivatives in both intrinsic and cellular assays. Smaller cycloalkanes such as cyclopropyl or cyclobutyl were tolerated at the quaternary carbon while larger rings were detrimental to potency. In vivo efficacy data in a B16F10 murine flank melanoma model in combination with temozolomide (TMZ) are described for two optimized analogs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Chemistry, Pharmaceutical/instrumentation , Enzyme Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , DNA/chemistry , DNA Repair , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacology , Kinetics , Mice , Neoplasm Transplantation , Transcription, Genetic
3.
Clin Cancer Res ; 13(9): 2728-37, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17473206

ABSTRACT

PURPOSE: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. EXPERIMENTAL DESIGN: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. RESULTS: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K(i)s of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d x 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. CONCLUSIONS: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.


Subject(s)
Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors , Administration, Oral , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Biological Availability , Blood-Brain Barrier/metabolism , Cell Line, Tumor , DNA Damage , Disease Models, Animal , Dogs , Drug Synergism , Female , Haplorhini , Humans , Male , Mice , Mice, Inbred Strains , Rats , Rats, Inbred Strains , Xenograft Model Antitumor Assays
4.
Trans R Soc Trop Med Hyg ; 99(3): 215-7, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15653124

ABSTRACT

A patient who died in the UK from Strongyloides infection, which he had contracted in the West Indies, is described. The diagnosis was not suspected initially because he had not been forthcoming about his origins. The infection was more severe because the patient was also infected with the human T cell leukaemia/lymphoma virus type 1 (HTLV-1) and this may explain why the infection with Strongyloides was fatal. The features of the case are outlined to help other clinicians faced with such a patient.


Subject(s)
Diarrhea/etiology , Strongyloidiasis/complications , Diagnostic Errors , Fatal Outcome , HTLV-I Infections/complications , Humans , Male , Middle Aged , Strongyloidiasis/diagnosis
5.
Cancer Res ; 66(17): 8731-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16951189

ABSTRACT

Inhibition of the prosurvival members of the Bcl-2 family of proteins represents an attractive strategy for the treatment of cancer. We have previously reported the activity of ABT-737, a potent inhibitor of Bcl-2, Bcl-X(L), and Bcl-w, which exhibits monotherapy efficacy in xenograft models of small-cell lung cancer and lymphoma and potentiates the activity of numerous cytotoxic agents. Here we describe the biological activity of A-385358, a small molecule with relative selectivity for binding to Bcl-X(L) versus Bcl-2 (K(i)'s of 0.80 and 67 nmol/L for Bcl-X(L) and Bcl-2, respectively). This compound efficiently enters cells and co-localizes with the mitochondrial membrane. Although A-385358 shows relatively modest single-agent cytotoxic activity against most tumor cell lines, it has an EC(50) of <500 nmol/L in cells dependent on Bcl-X(L) for survival. In addition, A-385358 enhances the in vitro cytotoxic activity of numerous chemotherapeutic agents (paclitaxel, etoposide, cisplatin, and doxorubicin) in several tumor cell lines. In A549 non-small-cell lung cancer cells, A-385358 potentiates the activity of paclitaxel by as much as 25-fold. Importantly, A-385358 also potentiated the activity of paclitaxel in vivo. Significant inhibition of tumor growth was observed when A-385358 was added to maximally tolerated or half maximally tolerated doses of paclitaxel in the A549 xenograft model. In tumors, the combination therapy also resulted in a significant increase in mitotic arrest followed by apoptosis relative to paclitaxel monotherapy.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/therapeutic use , Biphenyl Compounds/therapeutic use , Lung Neoplasms/drug therapy , Nitrophenols/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , bcl-X Protein/antagonists & inhibitors , Aniline Compounds/pharmacokinetics , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Drug Synergism , Humans , Kinetics , Male , Mice , Mice, SCID , Nitrophenols/pharmacokinetics , Nitrophenols/pharmacology , Paclitaxel/pharmacokinetics , Piperazines/pharmacokinetics , Piperazines/pharmacology , Piperazines/therapeutic use , Sulfonamides/pharmacokinetics , Transplantation, Heterologous
6.
Bioorg Med Chem Lett ; 16(13): 3424-9, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16644221

ABSTRACT

We describe a series of potent and selective oxindole-pyridine-based protein kinase B/Akt inhibitors. The most potent compound 11n in this series demonstrated an IC(50) of 0.17nM against Akt1 and more than 100-fold selectivity over other Akt isozymes. The selectivity against other protein kinases was highly dependent on the C-3 substitutions at the oxindole scaffold, with unsubstituted 9e or 3-furan-2-ylmethylene (11n) more selective and 3-(1H-pyrrol-2-yl)methylene (11f) or 3-(1H-imidazol-2-yl)methylene (11k) less selective. In a mouse xenograft model, 9d, 11f, and 11n inhibited tumor growth but with accompanying toxicity.


Subject(s)
Indoles/chemistry , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyridines/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Mice , Models, Molecular , Molecular Structure , Oxindoles , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Stereoisomerism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL