Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pediatr Res ; 95(6): 1564-1571, 2024 May.
Article in English | MEDLINE | ID: mdl-38228744

ABSTRACT

BACKGROUND: In very low birth weight (VLBW) infants, human milk cream added to standard human milk fortification is used to improve growth. This study aimed to evaluate the impact of cream supplement on the intestinal microbiome of VLBW infants. METHODS: Whole genome shotgun sequencing was performed on stool (n = 57) collected from a cohort of 23 infants weighing 500-1250 grams (control = 12, cream = 11). Both groups received an exclusive human milk diet (mother's own milk, donor human milk, and donor human milk-derived fortifier) with the cream group receiving an additional 2 kcal/oz cream at 100 mL/kg/day of fortified feeds and then 4 kcal/oz if poor growth. RESULTS: While there were no significant differences in alpha diversity, infants receiving cream significantly differed from infants in the control group in beta diversity. Cream group samples had significantly higher prevalence of Proteobacteria and significantly lower Firmicutes compared to control group. Klebsiella species dominated the microbiota of cream-exposed infants, along with bacterial pathways involved in lipid metabolism and metabolism of cofactors and amino acids. CONCLUSIONS: Cream supplementation significantly altered composition of the intestinal microbiome of VLBW infants to favor increased prevalence of Proteobacteria and functional gene content associated with these bacteria. IMPACT: We report changes to the intestinal microbiome associated with administration of human milk cream; a novel supplement used to improve growth rates of preterm very low birth weight infants. Since little is known about the impact of cream on intestinal microbiota composition of very low birth weight infants, our study provides valuable insight on the effects of diet on the microbiome of this population. Dietary supplements administered to preterm infants in neonatal intensive care units have the potential to influence the intestinal microbiome composition which may affect overall health status of the infant.


Subject(s)
Gastrointestinal Microbiome , Infant, Premature , Infant, Very Low Birth Weight , Milk, Human , Humans , Gastrointestinal Microbiome/drug effects , Infant, Newborn , Prospective Studies , Female , Male , Food, Fortified , Feces/microbiology , Proteobacteria , Dietary Supplements , Infant Nutritional Physiological Phenomena
2.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398483

ABSTRACT

We describe the epidemiology and clinical characteristics of 29 patients with cancer and diarrhea in whom Enteroaggregative Escherichia coli (EAEC) was initially identified by GI BioFire panel multiplex. E. coli strains were successfully isolated from fecal cultures in 14 of 29 patients. Six of the 14 strains were identified as EAEC and 8 belonged to other diverse E. coli groups of unknown pathogenesis. We investigated these strains by their adherence to human intestinal organoids, cytotoxic responses, antibiotic resistance profile, full sequencing of their genomes, and annotation of their functional virulome. Interestingly, we discovered novel and enhanced adherence and aggregative patterns for several diarrheagenic pathotypes that were not previously seen when co-cultured with immortalized cell lines. EAEC isolates displayed exceptional adherence and aggregation to human colonoids compared not only to diverse GI E. coli , but also compared to prototype strains of other diarrheagenic E. coli . Some of the diverse E. coli strains that could not be classified as a conventional pathotype also showed an enhanced aggregative and cytotoxic response. Notably, we found a high carriage rate of antibiotic resistance genes in both EAEC strains and diverse GI E. coli isolates and observed a positive correlation between adherence to colonoids and the number of metal acquisition genes carried in both EAEC and the diverse E. coli strains. This work indicates that E. coli from cancer patients constitute strains of remarkable pathotypic and genomic divergence, including strains of unknown disease etiology with unique virulomes. Future studies will allow for the opportunity to re-define E. coli pathotypes with greater diagnostic accuracy and into more clinically relevant groupings.

3.
Front Mol Biosci ; 9: 1095193, 2022.
Article in English | MEDLINE | ID: mdl-36699700

ABSTRACT

Infections by non-segmented negative-strand RNA viruses (NNSV) are widely thought to entail gradient gene expression from the well-established existence of a single promoter at the 3' end of the viral genome and the assumption of constant transcriptional attenuation between genes. But multiple recent studies show viral mRNA levels in infections by respiratory syncytial virus (RSV), a major human pathogen and member of NNSV, that are inconsistent with a simple gradient. Here we integrate known and newly predicted phenomena into a biophysically reasonable model of NNSV transcription. Our model succeeds in capturing published observations of respiratory syncytial virus and vesicular stomatitis virus (VSV) mRNA levels. We therefore propose a novel understanding of NNSV transcription based on the possibility of ejective polymerase-polymerase collisions and, in the case of RSV, biased polymerase diffusion.

4.
bioRxiv ; 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32511310

ABSTRACT

A novel coronavirus (nCoV-2019) was the cause of an outbreak of respiratory illness detected in Wuhan, Hubei Province, China in December of 2019. Genomic analyses of nCoV-2019 determined a 96% resemblance with a coronavirus isolated from a bat in 2013 (RaTG13); however, the receptor binding motif (RBM) of these two genomes share low sequence similarity. This divergence suggests a possible alternative source for the RBM coding sequence in nCoV-2019. We identified high sequence similarity in the RBM between nCoV-2019 and a coronavirus genome reconstructed from a viral metagenomic dataset from pangolins possibly indicating a more complex origin for nCoV-2019.

SELECTION OF CITATIONS
SEARCH DETAIL