Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Microb Ecol ; 71(3): 555-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26520832

ABSTRACT

Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.


Subject(s)
Bacteria/metabolism , Bays/microbiology , Geologic Sediments/analysis , Nitrogen/metabolism , Ammonium Compounds/analysis , Ammonium Compounds/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bays/chemistry , Biodiversity , Denitrification , Maryland , Nitrogen/analysis , Oxidation-Reduction , Phylogeny
2.
Microb Ecol ; 70(2): 311-21, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25721726

ABSTRACT

Denitrification is a critically important biogeochemical pathway that removes fixed nitrogen from ecosystems and thus ultimately controls the rate of primary production in nitrogen-limited systems. We examined the community structure of bacteria containing the nirS gene, a signature gene in the denitrification pathway, from estuarine and salt marsh sediments and from the water column of two of the world's largest marine oxygen-deficient zones (ODZs). We generated over 125,000 nirS gene sequences, revealing a large degree of genetic diversity including 1,815 unique taxa, the vast majority of which formed clades that contain no cultured representatives. These results underscore how little we know about the genetic diversity of metabolisms underlying this critical biogeochemical pathway. Marine sediments yielded 1,776 unique taxa when clustered at 95 % sequence identity, and there was no single nirS denitrifier that was a competitive dominant; different samples had different highly abundant taxa. By contrast, there were only 39 unique taxa identified in samples from the two ODZs, and 99 % of the sequences belonged to 5 or fewer taxa. The ODZ samples were often dominated by nirS sequences that shared a 92 % sequence identity to a nirS found in the anaerobic ammonium-oxidizing (anammox) genus Scalindua. This sequence was abundant in both ODZs, accounting for 38 and 59 % of all sequences, but it was virtually absent in marine sediments. Our data indicate that ODZs are remarkably depauperate in nirS genes compared to the remarkable genetic richness found in coastal sediments.


Subject(s)
Geologic Sediments/microbiology , Oxygen , Bacteria/metabolism , Denitrification , Ecosystem , Genetic Variation , Seawater/microbiology
3.
Front Microbiol ; 15: 1407573, 2024.
Article in English | MEDLINE | ID: mdl-38835481

ABSTRACT

Nitrous oxide (N2O) is a potent greenhouse gas and a major cause of ozone depletion. One-third of atmospheric N2O originates in aquatic environments. Reduction of N2O to dinitrogen gas (N2) requires the nitrous oxide reductase enzyme, which is encoded by the gene nosZ. Organisms that contain nosZ are the only known biological sinks of N2O and are found in diverse genera and a wide range of environments. The two clades of nosZ (Clade I and II) contain great diversity, making it challenging to study the population structure and distribution of nosZ containing organisms in the environment. A database of over 11,000 nosZ sequences was compiled from NCBI (representing diverse aquatic environments) and unpublished sequences and metagenomes (primarily from oxygen minimum zones, OMZs, where N2O levels are often elevated). Sequences were clustered into archetypes based on DNA and amino acid sequence identity and their clade, phylogeny, and environmental source were determined. Further analysis of the source and environmental distribution of the sequences showed strong habitat separation between clades and phylogeny. Although there are more Clade I nosZ genes in the compilation, Clade II is more diverse phylogenetically and has a wider distribution across environmental sources. On the other hand, Clade I nosZ genes are predominately found within marine sediment and are primarily from the phylum Pseudonomonadota. The majority of the sequences analyzed from marine OMZs represented distinct phylotypes between different OMZs showing that the nosZ gene displays regional and environmental separation. This study expands the known diversity of nosZ genes and provides a clearer picture of how the clades and phylogeny of nosZ organisms are distributed across diverse environments.

4.
ISME Commun ; 4(1): ycae060, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38770059

ABSTRACT

Anammox bacteria inhabiting oxygen-deficient zones (ODZs) are a major functional group mediating fixed nitrogen loss in the global ocean. However, many basic questions regarding the diversity, broad metabolisms, origin, and adaptive mechanisms of ODZ anammox bacteria remain unaddressed. Here we report two novel metagenome-assembled genomes of anammox bacteria affiliated with the Scalindua genus, which represent most, if not all, of the anammox bacteria in the global ODZs. Metagenomic read-recruiting and comparison with historical data show that they are ubiquitously present in all three major ODZs. Beyond the core anammox metabolism, both organisms contain cyanase, and the more dominant one encodes a urease, indicating most ODZ anammox bacteria can utilize cyanate and urea in addition to ammonium. Molecular clock analysis suggests that the evolutionary radiation of these bacteria into ODZs occurred no earlier than 310 million years ago, ~1 billion years after the emergence of the earliest modern-type ODZs. Different strains of the ODZ Scalindua species are also found in benthic sediments, and the first ODZ Scalindua is likely derived from the benthos. Compared to benthic strains of the same clade, ODZ Scalindua uniquely encodes genes for urea utilization but has lost genes related to growth arrest, flagellum synthesis, and chemotaxis, presumably for adaptation to thrive in the global ODZ waters. Our findings expand the known metabolisms and evolutionary history of the bacteria controlling the global nitrogen budget.

5.
ISME Commun ; 3(1): 76, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474642

ABSTRACT

Oxygen deficient zones (ODZs) account for about 30% of total oceanic fixed nitrogen loss via processes including denitrification, a microbially mediated pathway proceeding stepwise from NO3- to N2. This process may be performed entirely by complete denitrifiers capable of all four enzymatic steps, but many organisms possess only partial denitrification pathways, either producing or consuming key intermediates such as the greenhouse gas N2O. Metagenomics and marker gene surveys have revealed a diversity of denitrification genes within ODZs, but whether these genes co-occur within complete or partial denitrifiers and the identities of denitrifying taxa remain open questions. We assemble genomes from metagenomes spanning the ETNP and Arabian Sea, and map these metagenome-assembled genomes (MAGs) to 56 metagenomes from all three major ODZs to reveal the predominance of partial denitrifiers, particularly single-step denitrifiers. We find niche differentiation among nitrogen-cycling organisms, with communities performing each nitrogen transformation distinct in taxonomic identity and motility traits. Our collection of 962 MAGs presents the largest collection of pelagic ODZ microorganisms and reveals a clearer picture of the nitrogen cycling community within this environment.

6.
Environ Microbiol ; 14(3): 714-29, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22050634

ABSTRACT

Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play a vital role in bridging the input of fixed nitrogen, through N-fixation and remineralization, to its loss by denitrification and anammox. Yet the major environmental factors determining AOB and AOA population dynamics are little understood, despite both groups having a wide environmental distribution. This study examined the relative abundance of both groups of ammonia-oxidizing organisms (AOO) and the diversity of AOA across large-scale gradients in temperature, salinity and substrate concentration and dissolved oxygen. The relative abundance of AOB and AOA varied across environments, with AOB dominating in the freshwater region of the Chesapeake Bay and AOA more abundant in the water column of the coastal and open ocean. The highest abundance of the AOA amoA gene was recorded in the oxygen minimum zones (OMZs) of the Eastern Tropical South Pacific (ETSP) and the Arabian Sea (AS). The ratio of AOA : AOB varied from 0.7 in the Chesapeake Bay to 1600 in the Sargasso Sea. Relative abundance of both groups strongly correlated with ammonium concentrations. AOA diversity, as determined by phylogenetic analysis of clone library sequences and archetype analysis from a functional gene DNA microarray, detected broad phylogenetic differences across the study sites. However, phylogenetic diversity within physicochemically congruent stations was more similar than would be expected by chance. This suggests that the prevailing geochemistry, rather than localized dispersal, is the major driving factor determining OTU distribution.


Subject(s)
Ammonia/metabolism , Archaea/physiology , Bacteria/metabolism , Water Microbiology , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Bays/chemistry , Bays/microbiology , Biodiversity , Environment , Foraminifera , Fresh Water/chemistry , Fresh Water/microbiology , Genes, Archaeal , Genes, Bacterial , Nitrogen/metabolism , Oceans and Seas , Phylogeny , Salinity
7.
ISME J ; 15(5): 1317-1329, 2021 05.
Article in English | MEDLINE | ID: mdl-33408366

ABSTRACT

Nitrite is a pivotal component of the marine nitrogen cycle. The fate of nitrite determines the loss or retention of fixed nitrogen, an essential nutrient for all organisms. Loss occurs via anaerobic nitrite reduction to gases during denitrification and anammox, while retention occurs via nitrite oxidation to nitrate. Nitrite oxidation is usually represented in biogeochemical models by one kinetic parameter and one oxygen threshold, below which nitrite oxidation is set to zero. Here we find that the responses of nitrite oxidation to nitrite and oxygen concentrations vary along a redox gradient in a Pacific Ocean oxygen minimum zone, indicating niche differentiation of nitrite-oxidizing assemblages. Notably, we observe the full inhibition of nitrite oxidation by oxygen addition and nitrite oxidation coupled with nitrogen loss in the absence of oxygen consumption in samples collected from anoxic waters. Nitrite-oxidizing bacteria, including novel clades with high relative abundance in anoxic depths, were also detected in the same samples. Mechanisms corresponding to niche differentiation of nitrite-oxidizing bacteria across the redox gradient are considered. Implementing these mechanisms in biogeochemical models has a significant effect on the estimated fixed nitrogen budget.


Subject(s)
Nitrites , Oxygen , Anaerobiosis , Nitrogen , Oxidation-Reduction , Oxygen/analysis , Pacific Ocean , Seawater
8.
ISME J ; 15(5): 1434-1444, 2021 05.
Article in English | MEDLINE | ID: mdl-33349653

ABSTRACT

The ocean is a net source of N2O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N2O via microbial N2O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N2O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O2 tolerance, and community composition of N2O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N2O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N2O cycling. Microbes from the oxic layer consume N2O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N2O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O2 and N2O gradients right above the ODZ is a previously ignored potential gatekeeper of N2O and should be accounted for in the marine N2O budget.


Subject(s)
Nitrous Oxide , Oxygen , Kinetics
9.
ISME J ; 13(10): 2391-2402, 2019 10.
Article in English | MEDLINE | ID: mdl-31118472

ABSTRACT

Oxygen minimum zones (OMZs) are marine regions where O2 is undetectable at intermediate depths. Within OMZs, the oxygen-depleted zone (ODZ) induces anaerobic microbial processes that lead to fixed nitrogen loss via denitrification and anammox. Surprisingly, nitrite oxidation is also detected in ODZs, although all known marine nitrite oxidizers (mainly Nitrospina) are aerobes. We used metagenomic binning to construct metagenome-assembled genomes (MAGs) of nitrite oxidizers from OMZs. These MAGs represent two novel Nitrospina-like species, both of which differed from all known Nitrospina species, including cultured species and published MAGs. Relative abundances of different Nitrospina genotypes in OMZ and non-OMZ seawaters were estimated by mapping metagenomic reads to newly constructed MAGs and published high-quality genomes of members from the Nitrospinae phylum. The two novel species were present in all major OMZs and were more abundant inside ODZs, which is consistent with the detection of higher nitrite oxidation rates in ODZs than in oxic seawaters and suggests novel adaptations to anoxic environments. The detection of a large number of unclassified nitrite oxidoreductase genes in the dataset implies that the phylogenetic diversity of nitrite oxidizers is greater than previously thought.


Subject(s)
Bacteria/metabolism , Deltaproteobacteria/metabolism , Nitrites/metabolism , Oxygen/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Deltaproteobacteria/isolation & purification , Denitrification , Oxidation-Reduction , Oxygen/metabolism , Phylogeny , Seawater/analysis , Seawater/microbiology
10.
Front Microbiol ; 9: 170, 2018.
Article in English | MEDLINE | ID: mdl-29483902

ABSTRACT

Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes (amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

11.
Front Microbiol ; 8: 1183, 2017.
Article in English | MEDLINE | ID: mdl-28702012

ABSTRACT

The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water.

12.
Environ Microbiol Rep ; 9(6): 766-778, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28914491

ABSTRACT

Molecular analysis of dissimilatory nitrite reductase genes (nirS) was conducted using a customized microarray containing 165 nirS probes (archetypes) to identify members of sedimentary denitrifying communities. The goal of this study was to examine denitrifying community responses to changing environmental variables over spatial and temporal scales in the New River Estuary (NRE), NC, USA. Multivariate statistical analyses revealed three denitrifier assemblages and uncovered 'generalist' and 'specialist' archetypes based on the distribution of archetypes within these assemblages. Generalists, archetypes detected in all samples during at least one season, were commonly world-wide found in estuarine and marine ecosystems, comprised 8%-29% of the abundant NRE archetypes. Archetypes found in a particular site, 'specialists', were found to co-vary based on site specific conditions. Archetypes specific to the lower estuary in winter were designated Cluster I and significantly correlated by sediment Chl a and porewater Fe2+ . A combination of specialist and more widely distributed archetypes formed Clusters II and III, which separated based on salinity and porewater H2 S respectively. The co-occurrence of archetypes correlated with different environmental conditions highlights the importance of habitat type and niche differentiation among nirS-type denitrifying communities and supports the essential role of individual community members in overall ecosystem function.


Subject(s)
Bacterial Physiological Phenomena , Denitrification , Environmental Microbiology , Estuaries , Geologic Sediments/microbiology , Microbiota/genetics , Nitrite Reductases/genetics , Bacteria/enzymology , Bacteria/genetics , Ecosystem , Hydrogen Sulfide/metabolism , North Carolina , Salinity , Seasons
13.
ISME J ; 11(10): 2356-2367, 2017 10.
Article in English | MEDLINE | ID: mdl-28742073

ABSTRACT

Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day-1) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day-1) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N2-fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.


Subject(s)
Oxygen/analysis , Proteobacteria/metabolism , Seawater/microbiology , Nitrogen Fixation , Oxygen/metabolism , Pacific Ocean , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Seawater/chemistry
15.
Science ; 348(6239): 1127-9, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26045434

ABSTRACT

Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.


Subject(s)
Greenhouse Effect , Nitrogen Cycle , Nitrous Oxide/chemistry , Seawater/chemistry , Animals , Oceans and Seas , Oxidation-Reduction , Oxygen/chemistry
16.
Front Microbiol ; 4: 177, 2013.
Article in English | MEDLINE | ID: mdl-23847601

ABSTRACT

Ammonia-oxidizing archaea (AOA) have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs), where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA). The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP) AOA assemblages was investigated using principal component analysis (PCA) and redundancy analysis (RDA). In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature (higher in the Arabian Sea than in the ETSP) was the main factor that correlated with the differences between the AOA communities. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

17.
FEMS Microbiol Ecol ; 82(3): 597-606, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22697171

ABSTRACT

The Arabian Sea oxygen minimum zone (OMZ), the largest suboxic region in the world's oceans, is responsible for up to half of the global mesopelagic fixed nitrogen (N) loss from the ocean via denitrification and anammox. Dinitrogen (N(2)) fixation is usually attributed to cyanobacteria in the surface ocean. Model prediction and physiological inhibition of N(2) fixation by oxygen, however, suggest that N(2) fixation should be enhanced near the oxygen-deficient zone (ODZ) of the Arabian Sea. N(2) fixation and cyanobacterial nifH genes (the gene encoding dinitrogenase reductase) have been reported in surface waters overlying the Arabian Sea ODZ. Here, water samples from depths above and within the Arabian Sea ODZ were examined to explore the distribution, diversity, and expression of nifH genes. In surface waters, nifH DNA and cDNA sequences related to Trichodesmium, a diazotroph known to occur and fix N(2) in the Arabian Sea, were detected. Proteobacterial nifH phylotypes (DNA but not cDNA) were also detected in surface waters. Proteobacterial nifH DNA and cDNA sequences, as well as nifH DNA and cDNA sequences related to strictly anaerobic N -fixers, were obtained from oxygen-deficient depths. This first report of nifH gene expression in subsurface low-oxygen waters suggests that there is potential for active N(2) fixation by several phylogenetically and potentially metabolically diverse microorganisms in pelagic OMZs.


Subject(s)
Bacteria/classification , Bacteria/genetics , Genetic Variation , Nitrogen Fixation , Oxidoreductases/genetics , Seawater/microbiology , Bacteria/metabolism , Cyanobacteria/genetics , Cyanobacteria/metabolism , Denitrification , Molecular Sequence Data , Nitrogen/metabolism , Oceans and Seas , Oxygen/metabolism , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL