Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Ther ; 30(8): 2800-2816, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35526096

ABSTRACT

Several preclinical studies demonstrate that antitumor efficacy of programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade can be improved by combination with other checkpoint inhibitors. Lymphocyte-activation gene 3 (LAG-3) is an inhibitory checkpoint receptor involved in T cell exhaustion and tumor immune escape. Here, we describe ABL501, a bispecific antibody targeting LAG-3 and PD-L1 in modulating immune cell responses against tumors. ABL501 that efficiently inhibits both LAG-3 and PD-L1 pathways enhances the activation of effector CD4+ and CD8+ T cells with a higher degree than a combination of single anti-LAG-3 and anti-PD-L1. The augmented effector T cell responses by ABL501 resulted in mitigating regulatory-T-cell-mediated immunosuppression. Mechanistically, the simultaneous binding of ABL501 to LAG-3 and PD-L1 promotes dendritic cell (DC) activation and tumor cell conjugation with T cells that subsequently mounts effective CD8+ T cell responses. ABL501 demonstrates its potent in vivo antitumor efficacy in a humanized xenograft model and with knockin mice expressing human orthologs. The immune profiling analysis of peripheral blood reveals an increased abundance of LAG-3hiPD-1hi memory CD4+ T cell subset in relapsed cholangiocarcinoma patients after gemcitabine plus cisplatin therapy, which are more responsive to ABL501. This study supports the clinical evaluation of ABL501 as a novel cancer immunotherapeutic, and a first-in-human trial has started (NCT05101109).


Subject(s)
Antibodies, Bispecific , Antigens, CD , B7-H1 Antigen , Neoplasms , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Dendritic Cells , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , Tumor Escape , Lymphocyte Activation Gene 3 Protein
2.
Clin Cancer Res ; 30(18): 4155-4166, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-38743752

ABSTRACT

PURPOSE: To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PDL1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PDL1 and 4-1BB and demonstrated strong antitumor T-cell responses without considerable toxicity. In this study, we investigated the mechanisms by which the combination of ABL503 and anti-PD1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TIL) and antitumor efficacy. EXPERIMENTAL DESIGN: Single-cell suspensions of hepatocellular carcinoma and ovarian cancer tissues from treatment-naïve patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD1/hPDL1/h4-1BB triple-knock-in mice were used to evaluate the effects of ABL503 and anti-PD1 blockade in vivo. RESULTS: We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD1 blockade. Importantly, compared with anti-PD1 blockade alone, the combination of ABL503 and anti-PD1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD1 in vivo significantly alleviated tumor growth and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS: ABL503, a PDL1 and 4-1BB dual-targeting bispecific antibody, elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anticancer effects of anti-PD1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD1 inhibitors will likely further enhance therapeutic benefit in clinical trials. See related commentary by Molero-Glez et al., p. 3971.


Subject(s)
Antibodies, Bispecific , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Animals , Humans , Mice , Female , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Ovarian Neoplasms/immunology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology
3.
J Immunother Cancer ; 9(7)2021 07.
Article in English | MEDLINE | ID: mdl-34230109

ABSTRACT

BACKGROUND: Stimulation of 4-1BB with agonistic antibodies is a promising strategy for improving the therapeutic efficacy of immune checkpoint inhibitors (ICIs) or for overcoming resistance to ICIs. However, dose-dependent hepatotoxicity was observed in clinical trials with monoclonal anti-4-1BB agonistic antibodies due to the activation of 4-1BB signaling in liver resident Kupffer cells. METHODS: To avoid this on-target liver toxicity, we developed a novel bispecific antibody (4-1BB×PD-L1 bispecific antibody, termed "ABL503") uniquely designed to activate 4-1BB signaling only in the context of PD-L1, while also blocking PD-1/PD-L1 signaling. RESULTS: Functional evaluation using effector cells expressing both 4-1BB and PD-1 revealed superior biological activity of ABL503 compared with the combination of each monoclonal antibody. ABL503 also augmented T-cell activation in in vitro assays and further enhanced the anti-PD-L1-mediated reinvigoration of tumor-infiltrating CD8+ T cells from patients with cancer. Furthermore, in humanized PD-L1/4-1BB transgenic mice challenged with huPD-L1-expressing tumor cells, ABL503 induced superior anti-tumor activity and maintained an anti-tumor response against tumor rechallenge. ABL503 was well tolerated, with normal liver function in monkeys. CONCLUSION: The novel anti-4-1BB×PD-L1 bispecific antibody may exert a strong anti-tumor therapeutic efficacy with a low risk of liver toxicity through the restriction of 4-1BB stimulation in tumors.


Subject(s)
Antibodies, Bispecific/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , Animals , Antibodies, Bispecific/pharmacology , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL