ABSTRACT
DNA rearrangements resulting in human genome structural variants (SVs) are caused by diverse mutational mechanisms. We used long- and short-read sequencing technologies to investigate end products of de novo chromosome 17p11.2 rearrangements and query the molecular mechanisms underlying both recurrent and non-recurrent events. Evidence for an increased rate of clustered single-nucleotide variant (SNV) mutation in cis with non-recurrent rearrangements was found. Indel and SNV formation are associated with both copy-number gains and losses of 17p11.2, occur up to â¼1 Mb away from the breakpoint junctions, and favor C > G transversion substitutions; results suggest that single-stranded DNA is formed during the genesis of the SV and provide compelling support for a microhomology-mediated break-induced replication (MMBIR) mechanism for SV formation. Our data show an additional mutational burden of MMBIR consisting of hypermutation confined to the locus and manifesting as SNVs and indels predominantly within genes.
Subject(s)
Chromosomes, Human, Pair 17 , Mutation , Abnormalities, Multiple/genetics , Chromosome Breakpoints , Chromosome Disorders/genetics , Chromosome Duplication/genetics , DNA Copy Number Variations , DNA Repair/genetics , DNA Replication , Gene Rearrangement , Genome, Human , Genomic Structural Variation , Humans , INDEL Mutation , Models, Genetic , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA/methods , Smith-Magenis Syndrome/geneticsABSTRACT
De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.
Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Genomic Instability , Mutation , Chromosome Breakpoints , Chromosome Duplication , DNA Replication , Embryonic Development , Female , Gametogenesis , Humans , MaleABSTRACT
Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.
Subject(s)
Disease/genetics , Drosophila melanogaster/genetics , Genetic Testing , Inheritance Patterns , RNA Interference , Animals , Disease Models, Animal , Humans , X ChromosomeABSTRACT
CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.
Subject(s)
Central Nervous System Diseases/genetics , Mutation, Missense , Nuclear Proteins/metabolism , Peripheral Nervous System Diseases/genetics , Phosphotransferases/metabolism , RNA, Transfer/metabolism , Transcription Factors/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Central Nervous System Diseases/pathology , Cerebrum/pathology , Child, Preschool , Endoribonucleases/metabolism , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mice , Mice, Inbred CBA , Microcephaly/genetics , Peripheral Nervous System Diseases/pathology , RNA, Transfer/genetics , RNA-Binding ProteinsABSTRACT
DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.
Subject(s)
Charcot-Marie-Tooth Disease , Neurodevelopmental Disorders , Animals , Humans , Mice , Cell Line , Charcot-Marie-Tooth Disease/genetics , DEAD-box RNA Helicases/genetics , Dichlorodiphenyl Dichloroethylene , DNA Helicases , Mammals , Neoplasm Proteins/geneticsABSTRACT
Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.
Subject(s)
DNA Copy Number Variations , Exome Sequencing , Software , Humans , Adaptor Proteins, Signal Transducing , Homozygote , Rare Diseases/geneticsABSTRACT
BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Subject(s)
Kinesins , Osteogenesis Imperfecta , Animals , Humans , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Carrier Proteins/genetics , Down-Regulation , Kinesins/genetics , Kinesins/metabolism , NIH 3T3 Cells , Proteomics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolismABSTRACT
The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.
Subject(s)
Myokymia , Nerve Tissue Proteins , Animals , Autoantibodies , Axons , Genomics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mammals/genetics , Mice , Nerve Tissue Proteins/genetics , Phenotype , Reverse GeneticsABSTRACT
Despite release of the GRCh38 human reference genome more than seven years ago, GRCh37 remains more widely used by most research and clinical laboratories. To date, no study has quantified the impact of utilizing different reference assemblies for the identification of variants associated with rare and common diseases from large-scale exome-sequencing data. By calling variants on both the GRCh37 and GRCh38 references, we identified single-nucleotide variants (SNVs) and insertion-deletions (indels) in 1,572 exomes from participants with Mendelian diseases and their family members. We found that a total of 1.5% of SNVs and 2.0% of indels were discordant when different references were used. Notably, 76.6% of the discordant variants were clustered within discrete discordant reference patches (DISCREPs) comprising only 0.9% of loci targeted by exome sequencing. These DISCREPs were enriched for genomic elements including segmental duplications, fix patch sequences, and loci known to contain alternate haplotypes. We identified 206 genes significantly enriched for discordant variants, most of which were in DISCREPs and caused by multi-mapped reads on the reference assembly that lacked the variant call. Among these 206 genes, eight are implicated in known Mendelian diseases and 53 are associated with common phenotypes from genome-wide association studies. In addition, variant interpretations could also be influenced by the reference after lifting-over variant loci to another assembly. Overall, we identified genes and genomic loci affected by reference assembly choice, including genes associated with Mendelian disorders and complex human diseases that require careful evaluation in both research and clinical applications.
Subject(s)
Exome , Genome, Human , Polymorphism, Single Nucleotide , Cohort Studies , Genetic Diseases, Inborn/genetics , Humans , Reference ValuesABSTRACT
Coatomer complexes function in the sorting and trafficking of proteins between subcellular organelles. Pathogenic variants in coatomer subunits or associated factors have been reported in multi-systemic disorders, i.e., coatopathies, that can affect the skeletal and central nervous systems. We have identified loss-of-function variants in COPB2, a component of the coatomer complex I (COPI), in individuals presenting with osteoporosis, fractures, and developmental delay of variable severity. Electron microscopy of COPB2-deficient subjects' fibroblasts showed dilated endoplasmic reticulum (ER) with granular material, prominent rough ER, and vacuoles, consistent with an intracellular trafficking defect. We studied the effect of COPB2 deficiency on collagen trafficking because of the critical role of collagen secretion in bone biology. COPB2 siRNA-treated fibroblasts showed delayed collagen secretion with retention of type I collagen in the ER and Golgi and altered distribution of Golgi markers. copb2-null zebrafish embryos showed retention of type II collagen, disorganization of the ER and Golgi, and early larval lethality. Copb2+/- mice exhibited low bone mass, and consistent with the findings in human cells and zebrafish, studies in Copb2+/- mouse fibroblasts suggest ER stress and a Golgi defect. Interestingly, ascorbic acid treatment partially rescued the zebrafish developmental phenotype and the cellular phenotype in Copb2+/- mouse fibroblasts. This work identifies a form of coatopathy due to COPB2 haploinsufficiency, explores a potential therapeutic approach for this disorder, and highlights the role of the COPI complex as a regulator of skeletal homeostasis.
Subject(s)
Bone and Bones/metabolism , Coat Protein Complex I/genetics , Coatomer Protein/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Osteoporosis/genetics , Animals , Ascorbic Acid/pharmacology , Bone and Bones/drug effects , Bone and Bones/pathology , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Coat Protein Complex I/deficiency , Coatomer Protein/chemistry , Coatomer Protein/deficiency , Collagen Type I/genetics , Collagen Type I/metabolism , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Embryo, Nonmammalian , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Developmental , Golgi Apparatus , Haploinsufficiency , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mice , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Severity of Illness Index , ZebrafishABSTRACT
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Subject(s)
Genomics/methods , Mutation , Neurodevelopmental Disorders/epidemiology , Phenotype , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Pedigree , Prevalence , Turkey/epidemiology , Exome Sequencing , Young AdultABSTRACT
PURPOSE: FLVCR1 encodes a solute carrier (SLC) protein implicated in heme, choline, and ethanolamine transport. While Flvcr1-/- mice exhibit skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia (DBA), biallelic FLVCR1 variants in humans have previously only been linked to childhood or adult-onset ataxia, sensory neuropathy, and retinitis pigmentosa. METHODS: We identified individuals with undiagnosed neurodevelopmental disorders and biallelic FLVCR1 variants through international data sharing and characterized the functional consequences of their FLVCR1 variants. RESULTS: We ascertained 30 patients from 23 unrelated families with biallelic FLVCR1 variants and characterized a novel FLVCR1-related phenotype: severe developmental disorders with profound developmental delay, microcephaly (Z-score -2.5 to -10.5), brain malformations, epilepsy, spasticity, and premature death. Brain malformations ranged from mild brain volume reduction to hydranencephaly. Severely affected patients share traits including macrocytic anemia and skeletal malformations with Flvcr1-/- mice and DBA. FLVCR1 variants significantly reduce choline and ethanolamine transport and/or disrupt mRNA splicing. CONCLUSION: These data demonstrate a broad FLVCR1-related phenotypic spectrum ranging from severe multiorgan developmental disorders resembling DBA to adult-onset neurodegeneration. Our study expands our understanding of Mendelian choline and ethanolamine disorders and illustrates the importance of anticipating a wide phenotypic spectrum for known disease genes and incorporating model organism data into genome analysis to maximize genetic testing yield.
ABSTRACT
Pathogenic biallelic variants in LSS are associated with three Mendelian rare disease traits including congenital cataract type 44, autosomal recessive hypotrichosis type 14, and alopecia-intellectual disability syndrome type 4 (APMR4). We performed trio research exome sequencing on a family with a four-year-old male with global developmental delay, epilepsy and striking alopecia, and identified novel compound heterozygous LSS splice site (c.14+2T>C) and missense (c.1357 G>A; p.V453L) variant alleles. Rare features associated with APMR4 such as cryptorchidism, micropenis, mild cortical brain atrophy and thin corpus callosum were detected. Previously unreported APMR4 findings including cerebellar involvement in the form of unsteady ataxic gait, small vermis with prominent folia, were noted. A review of all reported variants to date in 29 families with LSS-related phenotypes showed an emerging genotype-phenotype correlation. Our report potentially expands LSS-related phenotypic spectrum and highlights the importance of performing brain imaging in LSS-related conditions.
Subject(s)
Intellectual Disability , Male , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation , Rare Diseases , Alopecia/diagnosis , Alopecia/genetics , Phenotype , SyndromeABSTRACT
Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.
Subject(s)
Microcephaly , Infant, Newborn , Humans , Microcephaly/genetics , Codon, Terminator , Iran , Microtubule-Associated Proteins/genetics , Frameshift Mutation/genetics , PedigreeABSTRACT
Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.
Subject(s)
Adaptor Proteins, Vesicular Transport , Congenital Disorders of Glycosylation , Humans , Glycosylation , Adaptor Proteins, Vesicular Transport/genetics , Fibroblasts/metabolism , Congenital Disorders of Glycosylation/genetics , PhenotypeABSTRACT
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Subject(s)
Epilepsy, Generalized , Sodium-Calcium Exchanger , Epilepsy, Generalized/diagnosis , Epilepsy, Generalized/genetics , Glutamine/metabolism , Histidine/metabolism , Humans , Metabolome , Nitrogen/metabolism , Sodium-Calcium Exchanger/geneticsABSTRACT
BACKGROUND: Pediatric nonmalignant lymphoproliferative disorders (PLPDs) are clinically and genetically heterogeneous. Long-standing immune dysregulation and lymphoproliferation in children may be life-threatening, and a paucity of data exists to guide evaluation and treatment of children with PLPD. OBJECTIVE: The primary objective of this study was to ascertain the spectrum of genomic immunologic defects in PLPD. Secondary objectives included characterization of clinical outcomes and associations between genetic diagnoses and those outcomes. METHODS: PLPD was defined by persistent lymphadenopathy, lymph organ involvement, or lymphocytic infiltration for more than 3 months, with or without chronic or significant Epstein-Barr virus (EBV) infection. Fifty-one subjects from 47 different families with PLPD were analyzed using whole exome sequencing. RESULTS: Whole exome sequencing identified likely genetic errors of immunity in 51% to 62% of families (53% to 65% of affected children). Presence of a genetic etiology was associated with younger age and hemophagocytic lymphohistiocytosis. Ten-year survival for the cohort was 72.4%, and patients with viable genetic diagnoses had a higher survival rate (82%) compared to children without a genetic explanation (48%, P = .03). Survival outcomes for individuals with EBV-associated disease and no genetic explanation were particularly worse than outcomes for subjects with EBV-associated disease and a genetic explanation (17% vs 90%; P = .002). Ascertainment of a molecular diagnosis provided targetable treatment options for up to 18 individuals and led to active management changes for 12 patients. CONCLUSIONS: PLPD defines children at high risk for mortality, and whole exome sequencing informs clinical risks and therapeutic opportunities for this diagnosis.
Subject(s)
Lymphoproliferative Disorders/genetics , Adolescent , Autoimmunity , Child , Child, Preschool , Female , Genetic Association Studies , Genetic Testing , Herpesvirus 4, Human/isolation & purification , Humans , Immunity/genetics , Infant , Lymphoproliferative Disorders/etiology , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/mortality , Male , Exome Sequencing , Young AdultABSTRACT
Here we describe MyGene2, Geno2MP, VariantMatcher, and Franklin; databases that provide variant-level information and phenotypic features to researchers, clinicians, healthcare providers and patients. Following the footsteps of the Matchmaker Exchange project that connects exome, genome, and phenotype databases at the gene level, these databases have as one goal to facilitate connection to one another using Data Connect, a standard for discovery and search of biomedical data from the Global Alliance for Genomics and Health (GA4GH).
Subject(s)
Databases, Genetic , Information Dissemination , Exome/genetics , Genomics , Humans , PhenotypeABSTRACT
Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.
Subject(s)
Craniofacial Abnormalities , Dwarfism , Limb Deformities, Congenital , Receptor Tyrosine Kinase-like Orphan Receptors , Urogenital Abnormalities , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Dwarfism/diagnosis , Dwarfism/genetics , Genes, Recessive , Humans , Limb Deformities, Congenital/diagnosis , Limb Deformities, Congenital/genetics , Male , Phenotype , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/geneticsABSTRACT
The advent of inexpensive, clinical exome sequencing (ES) has led to the accumulation of genetic data from thousands of samples from individuals affected with a wide range of diseases, but for whom the underlying genetic and molecular etiology of their clinical phenotype remains unknown. In many cases, detailed phenotypes are unavailable or poorly recorded and there is little family history to guide study. To accelerate discovery, we integrated ES data from 18,696 individuals referred for suspected Mendelian disease, together with relatives, in an Apache Hadoop data lake (Hadoop Architecture Lake of Exomes [HARLEE]) and implemented a genocentric analysis that rapidly identified 154 genes harboring variants suspected to cause Mendelian disorders. The approach did not rely on case-specific phenotypic classifications but was driven by optimization of gene- and variant-level filter parameters utilizing historical Mendelian disease-gene association discovery data. Variants in 19 of the 154 candidate genes were subsequently reported as causative of a Mendelian trait and additional data support the association of all other candidate genes with disease endpoints.