Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 377
Filter
1.
Development ; 149(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35502748

ABSTRACT

Adventitious roots (ARs) are an important type of plant root and display high phenotypic plasticity in response to different environmental stimuli. It is known that photoreceptors inhibit darkness-induced hypocotyl adventitious root (HAR) formation by directly stabilizing Aux/IAA proteins. In this study, we further report that phytochrome-interacting factors (PIFs) plays a central role in HAR initiation by simultaneously inducing the expression of genes involved in auxin biosynthesis, auxin transport and the transcriptional control of root primordium initiation. We found that, on the basis of their activity downstream of phytochrome, PIFs are required for darkness-induced HAR formation. Specifically, PIFs directly bind to the promoters of some genes involved in root formation, including auxin biosynthesis genes YUCCA2 (YUC2) and YUC6, the auxin influx carrier genes AUX1 and LAX3, and the transcription factors WOX5/7 and LBD16/29, to activate their expression. These findings reveal a previously uncharacterized transcriptional regulatory network underlying HAR formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Hypocotyl/genetics , Hypocotyl/metabolism , Indoleacetic Acids/metabolism , Phytochrome/genetics , Plant Roots/genetics , Plant Roots/metabolism
2.
PLoS Comput Biol ; 20(5): e1012118, 2024 May.
Article in English | MEDLINE | ID: mdl-38743803

ABSTRACT

In experiments, the distributions of mRNA or protein numbers in single cells are often fitted to the random telegraph model which includes synthesis and decay of mRNA or protein, and switching of the gene between active and inactive states. While commonly used, this model does not describe how fluctuations are influenced by crucial biological mechanisms such as feedback regulation, non-exponential gene inactivation durations, and multiple gene activation pathways. Here we investigate the dynamical properties of four relatively complex gene expression models by fitting their steady-state mRNA or protein number distributions to the simple telegraph model. We show that despite the underlying complex biological mechanisms, the telegraph model with three effective parameters can accurately capture the steady-state gene product distributions, as well as the conditional distributions in the active gene state, of the complex models. Some effective parameters are reliable and can reflect realistic dynamic behaviors of the complex models, while others may deviate significantly from their real values in the complex models. The effective parameters can also be applied to characterize the capability for a complex model to exhibit multimodality. Using additional information such as single-cell data at multiple time points, we provide an effective method of distinguishing the complex models from the telegraph model. Furthermore, using measurements under varying experimental conditions, we show that fitting the mRNA or protein number distributions to the telegraph model may even reveal the underlying gene regulation mechanisms of the complex models. The effectiveness of these methods is confirmed by analysis of single-cell data for E. coli and mammalian cells. All these results are robust with respect to cooperative transcriptional regulation and extrinsic noise. In particular, we find that faster relaxation speed to the steady state results in more precise parameter inference under large extrinsic noise.


Subject(s)
Gene Expression , Models, Genetic , Single-Cell Gene Expression Analysis , RNA, Messenger/analysis , RNA, Messenger/genetics , Proteins/analysis , Proteins/genetics , Escherichia coli/genetics , Animals , Mice , Gene Regulatory Networks
3.
EMBO Rep ; 24(1): e55542, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36394374

ABSTRACT

The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.


Subject(s)
Genome-Wide Association Study , Zea mays , Humans , Zea mays/genetics , Zea mays/metabolism , Zinc/metabolism , Plant Breeding , Seeds/genetics , Membrane Transport Proteins/genetics
4.
J Lipid Res ; 65(9): 100626, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39173829

ABSTRACT

Atherosclerotic cardiovascular disease is closely correlated with elevated low density lipoprotein-cholesterol. In feeding state, glucose and insulin activate mammalian target of rapamycin 1 that phosphorylates the deubiquitylase ubiquitin-specific peptidase 20 (USP20). USP20 then stabilizes HMG-CoA reductase, thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity, and increased energy expenditure through elevating UCP1. In Ldlr-/- mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.


Subject(s)
Metabolic Syndrome , Nanoparticles , RNA, Small Interfering , Ubiquitin Thiolesterase , Animals , Mice , Nanoparticles/chemistry , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , RNA, Small Interfering/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/drug therapy , Male , Receptors, LDL/metabolism , Receptors, LDL/genetics , Mice, Knockout , Lipids/blood , Lipids/chemistry , Mice, Inbred C57BL , Liver/metabolism , Liver/drug effects , Insulin Resistance , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Lipid Metabolism/drug effects , Uncoupling Protein 1
5.
Int J Cancer ; 155(4): 697-709, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38577882

ABSTRACT

Patient-derived organoids (PDOs) may facilitate treatment selection. This retrospective cohort study evaluated the feasibility and clinical benefit of using PDOs to guide personalized treatment in metastatic breast cancer (MBC). Patients diagnosed with MBC were recruited between January 2019 and August 2022. PDOs were established and the efficacy of customized drug panels was determined by measuring cell mortality after drug exposure. Patients receiving organoid-guided treatment (OGT) were matched 1:2 by nearest neighbor propensity scores with patients receiving treatment of physician's choice (TPC). The primary outcome was progression-free survival. Secondary outcomes included objective response rate and disease control rate. Targeted gene sequencing and pathway enrichment analysis were performed. Forty-six PDOs (46 of 51, 90.2%) were generated from 45 MBC patients. PDO drug screening showed an accuracy of 78.4% (95% CI 64.9%-91.9%) in predicting clinical responses. Thirty-six OGT patients were matched to 69 TPC patients. OGT was associated with prolonged median progression-free survival (11.0 months vs. 5.0 months; hazard ratio 0.53 [95% CI 0.33-0.85]; p = .01) and improved disease control (88.9% vs. 63.8%; odd ratio 4.26 [1.44-18.62]) compared with TPC. The objective response rate of both groups was similar. Pathway enrichment analysis in hormone receptor-positive, human epidermal growth factor receptor 2-negative patients demonstrated differentially modulated pathways implicated in DNA repair and transcriptional regulation in those with reduced response to capecitabine/gemcitabine, and pathways associated with cell cycle regulation in those with reduced response to palbociclib. Our study shows that PDO-based functional precision medicine is a feasible and effective strategy for MBC treatment optimization and customization.


Subject(s)
Breast Neoplasms , Organoids , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Organoids/pathology , Organoids/drug effects , Retrospective Studies , Middle Aged , Aged , Adult , Precision Medicine/methods , Progression-Free Survival , Neoplasm Metastasis , Pyridines/therapeutic use , Pyridines/administration & dosage , Piperazines/therapeutic use , Piperazines/administration & dosage , Treatment Outcome
6.
J Autoimmun ; 146: 103203, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643729

ABSTRACT

Lupus erythematosus (LE) is a heterogeneous, antibody-mediated autoimmune disease. Isolate discoid LE (IDLE) and systematic LE (SLE) are traditionally regarded as the two ends of the spectrum, ranging from skin-limited damage to life-threatening multi-organ involvement. Both belong to LE, but IDLE and SLE differ in appearance of skin lesions, autoantibody panels, pathological changes, treatments, and immunopathogenesis. Is discoid lupus truly a form of LE or is it a completely separate entity? This question has not been fully elucidated. We compared the clinical data of IDLE and SLE from our center, applied multi-omics technology, such as immune repertoire sequencing, high-resolution HLA alleles sequencing and multi-spectrum pathological system to explore cellular and molecular phenotypes in skin and peripheral blood from LE patients. Based on the data from 136 LE patients from 8 hospitals in China, we observed higher damage scores and fewer LE specific autoantibodies in IDLE than SLE patients, more uCDR3 sharing between PBMCs and skin lesion from SLE than IDLE patients, elevated diversity of V-J recombination in IDLE skin lesion and SLE PBMCs, increased SHM frequency and class switch ratio in IDLE skin lesion, decreased SHM frequency but increased class switch ratio in SLE PBMCs, HLA-DRB1*03:01:01:01, HLA-B*58:01:01:01, HLA-C*03:02:02:01, and HLA-DQB1*02:01:01:01 positively associated with SLE patients, and expanded Tfh-like cells with ectopic germinal center structures in IDLE skin lesions. These findings suggest a significant difference in the immunopathogenesis of skin lesions between SLE and IDLE patients. SLE is a B cell-predominate systemic immune disorder, while IDLE appears limited to the skin. Our findings provide novel insights into the pathogenesis of IDLE and other types of LE, which may direct more accurate diagnosis and novel therapeutic strategies.


Subject(s)
Autoantibodies , Lupus Erythematosus, Discoid , Lupus Erythematosus, Systemic , Skin , Humans , Lupus Erythematosus, Discoid/immunology , Lupus Erythematosus, Discoid/pathology , Female , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/diagnosis , Male , Autoantibodies/immunology , Autoantibodies/blood , Skin/pathology , Skin/immunology , Skin/metabolism , Adult , Middle Aged , Alleles , HLA Antigens/genetics , HLA Antigens/immunology , Young Adult , Multiomics
7.
Biotechnol Bioeng ; 121(10): 3224-3238, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38924076

ABSTRACT

In this study, a novel array electrospinning collector was devised to generate two distinct regenerated silk fibroin (SF) fibrous membranes: ordered and disordered. Leveraging electrostatic forces during the electrospinning process allowed precise control over the orientation of SF fiber, resulting in the creation of membranes comprising both aligned and randomly arranged fiber layers. This innovative approach resulted in the development of large-area membranes featuring exceptional stability due to their alternating patterned structure, achievable through expansion using the collector, and improving the aligned fiber membrane mechanical properties. The study delved into exploring the potential of these membranes in augmenting wound healing efficiency. Conducting in vitro toxicity assays with adipose tissue-derived mesenchymal stem cells (AD-MSCs) and normal human dermal fibroblasts (NHDFs) confirmed the biocompatibility of the SF membranes. We use dual perspectives on exploring the effects of different conditioned mediums produced by cells and structural cues of materials on NHDFs migration. The nanofibers providing the microenvironment can directly guide NHDFs migration and also affect the AD-MSCs and NHDFs paracrine effects, which can improve the chemotaxis of NHDFs migration. The ordered membrane, in particular, exhibited pronounced effectiveness in guiding directional cell migration. This research underscores the revelation that customizable microenvironments facilitated by SF membranes optimize the paracrine products of mesenchymal stem cells and offer valuable physical cues, presenting novel prospects for enhancing wound healing efficiency.


Subject(s)
Fibroins , Mesenchymal Stem Cells , Wound Healing , Fibroins/chemistry , Humans , Mesenchymal Stem Cells/cytology , Fibroblasts/cytology , Cells, Cultured , Animals , Nanofibers/chemistry , Tissue Scaffolds/chemistry , Bombyx/chemistry
8.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37919475

ABSTRACT

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Subject(s)
Heart Failure , Myocytes, Cardiac , Rats , Mice , Animals , Myocytes, Cardiac/metabolism , Isoproterenol/toxicity , Receptors, Adrenergic, beta/metabolism , Reactive Oxygen Species/metabolism , Heart Failure/chemically induced , Heart Failure/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Macrophages/metabolism
9.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364008

ABSTRACT

In this study, we obtain an exact time-dependent solution of the chemical master equation (CME) of an extension of the two-state telegraph model describing bursty or non-bursty protein expression in the presence of positive or negative autoregulation. Using the method of spectral decomposition, we show that the eigenfunctions of the generating function solution of the CME are Heun functions, while the eigenvalues can be determined by solving a continued fraction equation. Our solution generalizes and corrects a previous time-dependent solution for the CME of a gene circuit describing non-bursty protein expression in the presence of negative autoregulation [Ramos et al., Phys. Rev. E 83, 062902 (2011)]. In particular, we clarify that the eigenvalues are generally not real as previously claimed. We also investigate the relationship between different types of dynamic behavior and the type of feedback, the protein burst size, and the gene switching rate.


Subject(s)
Gene Regulatory Networks , Proteins , Stochastic Processes , Proteins/genetics , Proteins/metabolism , Gene Expression
10.
Cell Mol Life Sci ; 80(2): 50, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694058

ABSTRACT

The transdifferentiation from cardiac fibroblasts to myofibroblasts is an important event in the initiation of cardiac fibrosis. However, the underlying mechanism is not fully understood. Circ-sh3rf3 (circular RNA SH3 domain containing Ring Finger 3) is a novel circular RNA which was induced in hypertrophied ventricles by isoproterenol hydrochloride, and our work has established that it is a potential regulator in cardiac hypertrophy, but whether circ-sh3rf3 plays a role in cardiac fibrosis remains unclear, especially in the conversion of cardiac fibroblasts into myofibroblasts. Here, we found that circ-sh3rf3 was down-regulated in isoproterenol-treated rat cardiac fibroblasts and cardiomyocytes as well as during fibroblast differentiation into myofibroblasts. We further confirmed that circ-sh3rf3 could interact with GATA-4 proteins and reduce the expression of GATA-4, which in turn abolishes GATA-4 repression of miR-29a expression and thus up-regulates miR-29a expression, thereby inhibiting fibroblast-myofibroblast differentiation and myocardial fibrosis. Our work has established a novel Circ-sh3rf3/GATA-4/miR-29a regulatory cascade in fibroblast-myofibroblast differentiation and myocardial fibrosis, which provides a new therapeutic target for myocardial fibrosis.


Subject(s)
Cardiomyopathies , Fibroblasts , Fibrosis , Myofibroblasts , RNA, Circular , Animals , Rats , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Differentiation/genetics , Cell Differentiation/physiology , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myofibroblasts/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Oral Dis ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923332

ABSTRACT

OBJECTIVES: Porphyromonas gingivalis-LPS regulated bone metabolism by triggering dysfunction of osteoblasts directly, and affecting activity of osteoclasts through intracellular communication. Exosome, as the mediator of intercellular communication, was important vesicle to regulate osteogenesis and osteoclastogenesis. This research was designed for investigating the mechanism of BMSCs-EXO in modulating osteoclastic activity under the P. gingivalis-LPS. MATERIALS AND METHODS: The cytotoxicity and osteogenic effects of P. gingivalis-LPS on BMSCs was evaluated, and then osteoclastic activity of RAW264.7 co-cultured with exosomes was detected. Besides, Affymetrix miRNA array and luciferase reporter assay were used to identify the target exosomal miRNA signal pathway. RESULTS: BMSCs' osteogenic differentiation and proliferation were decreased under 1 and 10 µg/mL P. gingivalis-LPS. Osteoclastic-related genes and proteins levels were promoted by P. gingivalis-LPS-stimulated BMSCs-EXO. Based on the miRNA microarray analysis, exosomal miR-151-3p was lessened in BMExo-LPS group, which facilitated osteoclastic differentiation through miR-151-3p/PAFAH1B1. CONCLUSIONS: Porphyromonas gingivalis-LPS could regulated bone metabolism by inhibiting proliferation and osteogenesis of BMSCs directly. Also, P. gingivalis-LPS-stimulated BMSCs-EXO promoted osteoclastogenesis via activating miR-151-3p/PAFAH1B1 signal pathway.

12.
Article in English | MEDLINE | ID: mdl-38619440

ABSTRACT

BACKGROUND: Lupus erythematosus (LE) is a spectrum of autoimmune diseases. Due to the complexity of cutaneous LE (CLE), clinical skin image-based artificial intelligence is still experiencing difficulties in distinguishing subtypes of LE. OBJECTIVES: We aim to develop a multimodal deep learning system (MMDLS) for human-AI collaboration in diagnosis of LE subtypes. METHODS: This is a multi-centre study based on 25 institutions across China to assist in diagnosis of LE subtypes, other eight similar skin diseases and healthy subjects. In total, 446 cases with 800 clinical skin images, 3786 multicolor-immunohistochemistry (multi-IHC) images and clinical data were collected, and EfficientNet-B3 and ResNet-18 were utilized in this study. RESULTS: In the multi-classification task, the overall performance of MMDLS on 13 skin conditions is much higher than single or dual modals (Sen = 0.8288, Spe = 0.9852, Pre = 0.8518, AUC = 0.9844). Further, the MMDLS-based diagnostic-support help improves the accuracy of dermatologists from 66.88% ± 6.94% to 81.25% ± 4.23% (p = 0.0004). CONCLUSIONS: These results highlight the benefit of human-MMDLS collaborated framework in telemedicine by assisting dermatologists and rheumatologists in the differential diagnosis of LE subtypes and similar skin diseases.

13.
BMC Musculoskelet Disord ; 25(1): 276, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600475

ABSTRACT

BACKGROUND: Traditional total hip arthroplasty (THA) using the direct anterior approach (DAA) requires a hip extension. This study aimed to compare the clinical outcomes of patients undergoing THA with DAA using either the no hip extension (NHE) or the traditional hip extension (THE) strategy. METHODS: A retrospective analysis of demographics, clinical and radiological outcomes, and occurrence of complications was performed using data from 123 patients treated between January 2020 and November 2021. The patients were categorised into two groups: NHE (84 patients) and THE (39 patients). RESULTS: The NHE group exhibited shorter operative time and had more male participants with higher ages. Comparable outcomes were observed in the visual analogue scale, Harris Hip, and Oxford Hip scores at the final follow-up. Furthermore, complications were observed in the NHE and THE groups, including two and one greater trochanteric fractures and three and one transfusions, respectively. CONCLUSIONS: Compared to the THE, employing the NHE strategy during THA with DAA in elderly and young female patients resulted in comparable clinical outcomes with several advantages, such as favourable surgical time. The NHE method also exhibited good safety and effectiveness. Therefore, the NHE strategy may be a favourable option for elderly and young female patients.


Subject(s)
Arthroplasty, Replacement, Hip , Humans , Male , Female , Aged , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Retrospective Studies , Treatment Outcome , Radiography , Operative Time
14.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38538223

ABSTRACT

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Subject(s)
Abietanes , Epilepsy , Proto-Oncogene Proteins c-akt , Animals , Rats , Abietanes/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Disks Large Homolog 4 Protein/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Signal Transduction
15.
J Basic Microbiol ; 64(4): e2300705, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253966

ABSTRACT

Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.


Subject(s)
Ergothioneine , Mycobacteriaceae , Animals , Ergothioneine/genetics , Ergothioneine/metabolism , Antioxidants/metabolism
16.
J Asian Nat Prod Res ; 26(8): 892-899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38600044

ABSTRACT

Two new triterpene fatty acid esters, 3ß-palmityloxy-12,27-cyclofriedoolean-14-en-11α-ol (1) and 3ß-palmityloxy-19α-hydroxyursane (2), together with 3ß-hydroxy-11-oxo-olean-12-enyl palmitate (3) were isolated from the potent anti-inflammatory active fraction of the petroleum ether-soluble part of Cirsium setosum ethanol extract. Compound 1 was found to be a rare 12,27-cyclopropane triterpenoid. Their structures were determined through spectral data analysis combined with literature reports. Furthermore, in vitro experiment, compounds 1-3 exhibited significant inhibitory effects on nitric oxide production in lipopolysaccharide-activated mouse RAW264.7 macrophages.


Subject(s)
Anti-Inflammatory Agents , Cirsium , Esters , Lipopolysaccharides , Nitric Oxide , Triterpenes , Animals , Mice , Cirsium/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Molecular Structure , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Lipopolysaccharides/pharmacology , Esters/pharmacology , Esters/chemistry , Macrophages/drug effects
17.
Entropy (Basel) ; 26(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38539727

ABSTRACT

In this work, we explore information geometry theoretic measures for characterizing neural information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models for both healthy subjects and Alzheimer's disease (AD) patients with both eyes-closed and eyes-open conditions. In particular, we employ information rates to quantify the time evolution of probability density functions of simulated EEG signals, and employ causal information rates to quantify one signal's instantaneous influence on another signal's information rate. These two measures help us find significant and interesting distinctions between healthy subjects and AD patients when they open or close their eyes. These distinctions may be further related to differences in neural information processing activities of the corresponding brain regions, and to differences in connectivities among these brain regions. Our results show that information rate and causal information rate are superior to their more traditional or established information-theoretic counterparts, i.e., differential entropy and transfer entropy, respectively. Since these novel, information geometry theoretic measures can be applied to experimental EEG signals in a model-free manner, and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals, we believe that they can form an important and powerful tool-set for both understanding neural information processing in the brain and the diagnosis of neurological disorders, such as Alzheimer's disease as presented in this work.

18.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4499-4509, 2024 Aug.
Article in Zh | MEDLINE | ID: mdl-39307786

ABSTRACT

This study explores the effects and mechanisms of Modified Xiaoyao Powder on the intestinal barrier and intestinal flora in mice with metabolic associated fatty liver disease(MAFLD) based on the " gut-liver axis". Sixty male C57BL/6 mice were randomly divided into the normal group, model group, bifidobacterium tetrad tablet group(SQ), and Modified Xiaoyao Powder groups with low,medium and high doses(XL, XM, XH), with 10 mice in each group. All the mice were administrated with a high-fat diet to build the MAFLD model except the normal group and then treated with related drugs for 12 weeks. Body mass, liver wet weight, and liver index were detected. Serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol(TC), triacylglycerol(TG), low density lipoprotein cholesterol(LDL-C), high density lipoprotein cholesterol(HDL-C), and lipopolysaccharide(LPS)levels were detected using the biochemical kits. The contents of tumor necrosis factor-α(TNF-α) and interleukin(IL-6) in the liver were tested simultaneously. The morphological changes of the liver and intestine were observed using hematoxylin-eosin(HE) staining and oil red O staining. The goblet cells in the ileum were detected by periodic acid Schiff and alcian blue stain(AB-PAS) staining.The expression of zonula occludens-1(ZO-1), recombinant occludin(occludin), and recombinant claudin 1(claudin-1) in ileum and colon were detected by immunohistochemistry and Western blot. The changes of intestinal flora in mice were analyzed by 16S rRNA gene sequencing. The results showed that compared with the normal group, body weight, liver wet weight and liver index in the model group increased. The contents of TC, TG, ALT, AST, LDL-C, and LPS in the serum of the model group increased, while HDL-C decreased. Meanwhile, the contents of TNF-α and IL-6 in liver tissue increased and liver lipid accumulation increased, indicating successful model induction. Compared with the model group, body weight, liver wet weight, and liver index were decreased in XM,XH groups and SQ group. Serum levels of TC, TG, LDL-C, ALT and AST in XM group and SQ group were significantly decreased,and HDL-C levels were increased. The levels of IL-6, TNF-α in liver tissue and serum LPS in the XL, XM groups and SQ group were significantly decreased. The protein expression of claudin-1, occludin and ZO-1 in XL, XM groups and SQ group were increased. The analysis of intestinal flora showed that compared with the model group, Modified Xiaoyao Powder with a medium dose could significantly improve the richness and diversity of intestinal flora in mice. At the phylum level, the Firmicutes/Bacteroidetes(F/B) ratio decreased; at the genus level, Lactobacillus, Brautella, Bacteroides, and Ackermannia increased, while Prevotella, Desulfovibrio and Turicibacter decreased. The main differential species were Odorbacteraceaeae and Peptostreptococcaceae. In conclusion, Modified Xiaoyao Powder could inhibit inflammation, regulate intestinal flora homeostasis, and promote the repair of the intestinal mucosal barrier in mice with MAFLD.


Subject(s)
Drugs, Chinese Herbal , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Male , Mice , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Liver/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Powders , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Humans , Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Occludin/metabolism , Occludin/genetics , Fatty Liver/drug therapy , Fatty Liver/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Triglycerides/metabolism
19.
Eur J Immunol ; 52(4): 669-680, 2022 04.
Article in English | MEDLINE | ID: mdl-35092307

ABSTRACT

Immune repertoire (IR) during treatment may be a surrogate biomarker for disease response. Changes of the IR in systemic lupus erythematosus patients in response to immunosuppressive drugs were identified in ten SLE patients. Patients provided peripheral blood mononuclear cells at two time points for sequencing. They were divided into sensitive and nonsensitive groups by their clinical responses to immunosuppressive drugs. After treatment, the BCR expression significantly decreased in patients from the sensitive group while there was no change in patients from the nonsensitive group. IgM comprised a dominant portion of the BCR repertoire and increased slightly in all patients in the sensitive group but decreased in the nonsensitive group. IgA also exhibited opposing changes between the two groups. Shorter CDR3 of TRB and TRG chains occurred in the sensitive group. CDR3 length of IGK decreased significantly in the sensitive group. CDR3 of TCR δ/γ changed distinctly between time points in the sensitive group. Six immune-related genes showed differential expression levels in sensitive and nonsensitive groups. Our study shows that it is BCR repertoire sensitivity to immunosuppressive drugs in SLE patients and sheds light on personalized therapy for SLE.


Subject(s)
Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism
20.
Small ; 19(27): e2208076, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36971280

ABSTRACT

Developing low-cost and high-performance transition metal-based electrocatalysts is crucial for realizing sustainable hydrogen evolution reaction (HER) in alkaline media. Here, a cooperative boron and vanadium co-doped nickel phosphide electrode (B, V-Ni2 P) is developed to regulate the intrinsic electronic configuration of Ni2 P and promote HER processes. Experimental and theoretical results reveal that V dopants in B, V-Ni2 P greatly facilitate the dissociation of water, and the synergistic effect of B and V dopants promotes the subsequent desorption of the adsorbed hydrogen intermediates. Benefiting from the cooperativity of both dopants, the B, V-Ni2 P electrocatalyst requires a low overpotential of 148 mV to attain a current density of -100 mA cm-2  with excellent durability. The B, V-Ni2 P is applied as the cathode in both alkaline water electrolyzers (AWEs) and anion exchange membrane water electrolyzers (AEMWEs). Remarkably, the AEMWE delivers a stable performance to achieve 500 and 1000 mA cm-2  current densities at a cell voltage of 1.78 and 1.92 V, respectively. Furthermore, the developed AWEs and AEMWEs also demonstrate excellent performance for overall seawater electrolysis.

SELECTION OF CITATIONS
SEARCH DETAIL