Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nature ; 617(7962): 818-826, 2023 05.
Article in English | MEDLINE | ID: mdl-37198486

ABSTRACT

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.


Subject(s)
Histones , Lysine , Neoplasms , Protein Processing, Post-Translational , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Glutaryl-CoA Dehydrogenase/metabolism , Histones/chemistry , Histones/metabolism , Lysine/deficiency , Lysine/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , RNA, Double-Stranded/immunology , Humans , Animals , Mice , Interferon Type I/immunology
2.
Mol Cell ; 71(4): 526-539.e8, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30118678

ABSTRACT

Nuclear receptors induce both transcriptional activation and repression programs responsible for development, homeostasis, and disease. Here, we report a previously overlooked enhancer decommissioning strategy underlying a large estrogen receptor alpha (ERα)-dependent transcriptional repression program. The unexpected signature for this E2-induced program resides in indirect recruitment of ERα to a large cohort of pioneer factor basally active FOXA1-bound enhancers that lack cognate ERα DNA-binding elements. Surprisingly, these basally active estrogen-repressed (BAER) enhancers are decommissioned by ERα-dependent recruitment of the histone demethylase KDM2A, functioning independently of its demethylase activity. Rather, KDM2A tethers the E3 ubiquitin-protein ligase NEDD4 to ubiquitylate/dismiss Pol II to abrogate eRNA transcription, with consequent target gene downregulation. Thus, our data reveal that Pol II ubiquitylation/dismissal may serve as a potentially broad strategy utilized by indirectly bound nuclear receptors to abrogate large programs of pioneer factor-mediated, eRNA-producing enhancers.


Subject(s)
Enhancer Elements, Genetic , Estrogen Receptor alpha/genetics , F-Box Proteins/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , RNA Polymerase II/genetics , Base Sequence , Binding Sites , CRISPR-Cas Systems , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , F-Box Proteins/metabolism , Gene Editing/methods , Gene Expression Regulation/drug effects , HEK293 Cells , Hepatocyte Nuclear Factor 3-alpha/metabolism , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , MCF-7 Cells , Nedd4 Ubiquitin Protein Ligases/metabolism , Protein Binding , RNA/genetics , RNA/metabolism , RNA Polymerase II/metabolism , Signal Transduction , Transcription, Genetic/drug effects , Ubiquitination/drug effects
3.
Mol Cell ; 66(3): 321-331.e6, 2017 May 04.
Article in English | MEDLINE | ID: mdl-28475868

ABSTRACT

The molecular mechanisms underlying the opposing functions of glucocorticoid receptors (GRs) and estrogen receptor α (ERα) in breast cancer development remain poorly understood. Here we report that, in breast cancer cells, liganded GR represses a large ERα-activated transcriptional program by binding, in trans, to ERα-occupied enhancers. This abolishes effective activation of these enhancers and their cognate target genes, and it leads to the inhibition of ERα-dependent binding of components of the MegaTrans complex. Consistent with the effects of SUMOylation on other classes of nuclear receptors, dexamethasone (Dex)-induced trans-repression of the estrogen E2 program appears to depend on GR SUMOylation, which leads to stable trans-recruitment of the GR-N-CoR/SMRT-HDAC3 corepressor complex on these enhancers. Together, these results uncover a mechanism by which competitive recruitment of DNA-binding nuclear receptors/transcription factors in trans to hot spot enhancers serves as an effective biological strategy for trans-repression, with clear implications for breast cancer and other diseases.


Subject(s)
Breast Neoplasms/metabolism , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic , Receptor Cross-Talk , Receptors, Glucocorticoid/metabolism , Transcription, Genetic , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Dexamethasone/pharmacology , Down-Regulation , Enhancer Elements, Genetic , Estradiol/pharmacology , Estrogen Receptor alpha/agonists , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , MCF-7 Cells , Multiprotein Complexes , Mutation , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 2/genetics , Nuclear Receptor Co-Repressor 2/metabolism , Protein Binding , RNA Interference , Receptor Cross-Talk/drug effects , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/genetics , Signal Transduction , Sumoylation , Transcription, Genetic/drug effects , Transcriptome , Transfection
4.
Proc Natl Acad Sci U S A ; 115(2): E244-E252, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29263096

ABSTRACT

Hematopoietic stem cells (HSCs) maintain a quiescent state during homeostasis, but with acute infection, they exit the quiescent state to increase the output of immune cells, the so-called "emergency hematopoiesis." However, HSCs' response to severe infection during septic shock and the pathological impact remain poorly elucidated. Here, we report that the histone demethylase KDM1A/LSD1, serving as a critical regulator of mammalian hematopoiesis, is a negative regulator of the response to inflammation in HSCs during endotoxic shock typically observed during acute bacterial or viral infection. Inflammation-induced LSD1 deficiency results in an acute expansion of a pathological population of hyperproliferative and hyperinflammatory myeloid progenitors, resulting in a septic shock phenotype and acute death. Unexpectedly, in vivo administration of bacterial lipopolysaccharide (LPS) to wild-type mice results in acute suppression of LSD1 in HSCs with a septic shock phenotype that resembles that observed following induced deletion of LSD1 The suppression of LSD1 in HSCs is caused, at least in large part, by a cohort of inflammation-induced microRNAs. Significantly, reconstitution of mice with bone marrow progenitor cells expressing inhibitors of these inflammation-induced microRNAs blocked the suppression of LSD1 in vivo following acute LPS administration and prevented mortality from endotoxic shock. Our results indicate that LSD1 activators or miRNA antagonists could serve as a therapeutic approach for life-threatening septic shock characterized by dysfunction of HSCs.


Subject(s)
Hematopoietic Stem Cells/physiology , Histone Demethylases/metabolism , Homeostasis/physiology , Shock, Septic/pathology , Animals , Down-Regulation , Gene Expression Regulation, Enzymologic , Histone Demethylases/genetics , Mice , Mice, Knockout , Mice, Transgenic , MicroRNAs
5.
Nature ; 500(7464): 598-602, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23945587

ABSTRACT

Although recent studies have indicated roles of long non-coding RNAs (lncRNAs) in physiological aspects of cell-type determination and tissue homeostasis, their potential involvement in regulated gene transcription programs remains rather poorly understood. The androgen receptor regulates a large repertoire of genes central to the identity and behaviour of prostate cancer cells, and functions in a ligand-independent fashion in many prostate cancers when they become hormone refractory after initial androgen deprivation therapy. Here we report that two lncRNAs highly overexpressed in aggressive prostate cancer, PRNCR1 (also known as PCAT8) and PCGEM1, bind successively to the androgen receptor and strongly enhance both ligand-dependent and ligand-independent androgen-receptor-mediated gene activation programs and proliferation in prostate cancer cells. Binding of PRNCR1 to the carboxy-terminally acetylated androgen receptor on enhancers and its association with DOT1L appear to be required for recruitment of the second lncRNA, PCGEM1, to the androgen receptor amino terminus that is methylated by DOT1L. Unexpectedly, recognition of specific protein marks by PCGEM1-recruited pygopus 2 PHD domain enhances selective looping of androgen-receptor-bound enhancers to target gene promoters in these cells. In 'resistant' prostate cancer cells, these overexpressed lncRNAs can interact with, and are required for, the robust activation of both truncated and full-length androgen receptor, causing ligand-independent activation of the androgen receptor transcriptional program and cell proliferation. Conditionally expressed short hairpin RNA targeting these lncRNAs in castration-resistant prostate cancer cell lines strongly suppressed tumour xenograft growth in vivo. Together, these results indicate that these overexpressed lncRNAs can potentially serve as a required component of castration-resistance in prostatic tumours.


Subject(s)
RNA, Long Noncoding/genetics , Receptors, Androgen/metabolism , Transcriptional Activation/genetics , Up-Regulation/genetics , Animals , Castration , Cell Line, Tumor , Cell Proliferation , Enhancer Elements, Genetic/genetics , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transcription Factors/metabolism
6.
Proc Natl Acad Sci U S A ; 111(25): 9235-40, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24928520

ABSTRACT

Understanding the mechanisms by which compounds discovered using cell-based phenotypic screening strategies might exert their effects would be highly augmented by new approaches exploring their potential interactions with the genome. For example, altered androgen receptor (AR) transcriptional programs, including castration resistance and subsequent chromosomal translocations, play key roles in prostate cancer pathological progression, making the quest for identification of new therapeutic agents and an understanding of their actions a continued priority. Here we report an approach that has permitted us to uncover the sites and mechanisms of action of a drug, referred to as "SD70," initially identified by phenotypic screening for inhibitors of ligand and genotoxic stress-induced translocations in prostate cancer cells. Based on synthesis of a derivatized form of SD70 that permits its application for a ChIP-sequencing-like approach, referred to as "Chem-seq," we were next able to efficiently map the genome-wide binding locations of this small molecule, revealing that it largely colocalized with AR on regulatory enhancers. Based on these observations, we performed the appropriate global analyses to ascertain that SD70 inhibits the androgen-dependent AR program, and prostate cancer cell growth, acting, at least in part, by functionally inhibiting the Jumonji domain-containing demethylase, KDM4C. Global location of candidate drugs represents a powerful strategy for new drug development by mapping genome-wide location of small molecules, a powerful adjunct to contemporary drug development strategies.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Drug Delivery Systems/methods , Neoplasm Proteins/genetics , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents , Cell Line, Tumor , DNA Mutational Analysis/methods , Humans , Male , Mice , Neoplasm Proteins/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Translocation, Genetic
7.
PLoS Biol ; 11(4): e1001542, 2013.
Article in English | MEDLINE | ID: mdl-23630454

ABSTRACT

Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of peptidergic endocrine cells and support an important role of PICK1/ICA69 in maintenance of metabolic homeostasis.


Subject(s)
Glucose Intolerance/metabolism , Growth Disorders/metabolism , Nuclear Proteins/deficiency , Secretory Vesicles/metabolism , Animals , Autoantigens/physiology , COS Cells , Carrier Proteins/genetics , Cell Cycle Proteins , Cell Line , Chlorocebus aethiops , Drosophila melanogaster , Female , Gene Expression , Gene Expression Regulation , Glucose/metabolism , Glucose Intolerance/genetics , Growth Disorders/genetics , Growth Hormone/deficiency , Growth Hormone/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Pituitary Gland/metabolism , Protein Binding , Protein Transport , Rats , Time-Lapse Imaging , trans-Golgi Network/metabolism
8.
Res Sq ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766212

ABSTRACT

Understanding the molecular mechanisms underlying tumorigenesis is crucial for developing effective cancer therapies. Here, we investigate the co-amplification of MED30 and MYC across diverse cancer types and its impact on oncogenic transcriptional programs. Transcriptional profiling of MYC and MED30 single or both overexpression/amplification revealed the over amount of MED30 lead MYC to a new transcriptional program that associate with poor prognosis. Mechanistically, MED30 overexpression/amplification recruits other Mediator components and binding of MYC to a small subset of novel genomic regulatory sites, changing the epigenetic marks and inducing the formation of new enhancers, which drive the expression of target genes crucial for cancer progression. In vivo studies in pancreatic ductal adenocarcinoma (PDAC) further validate the oncogenic potential of MED30, as its overexpression promotes tumor growth and can be attenuated by knockdown of MYC. Using another cancer type as an example, MED30 knockdown reduces tumor growth particularly in MYC high-expressed glioblastoma (GBM) cell lines. Overall, our study elucidates the critical role of MED30 overexpression in orchestrating oncogenic transcriptional programs and highlights its potential as a therapeutic target for MYC-amplified cancer.

9.
Nat Cancer ; 5(1): 147-166, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172338

ABSTRACT

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Cytokines/metabolism , Endothelial Cells/metabolism , Receptors, CCR7/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Proliferation , Cholesterol/metabolism
10.
J Biol Eng ; 17(1): 78, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129905

ABSTRACT

In view of its high mechanical performance, outstanding aesthetic qualities, and biological stability, zirconia has been widely used in the fields of dentistry. Due to its potential to produce suitable advanced configurations and structures for a number of medical applications, especially personalized created devices, ceramic additive manufacturing (AM) has been attracting a great deal of attention in recent years. AM zirconia hews out infinite possibilities that are otherwise barely possible with traditional processes thanks to its freedom and efficiency. In the review, AM zirconia's physical and adhesive characteristics, accuracy, biocompatibility, as well as their clinical applications have been reviewed. Here, we highlight the accuracy and biocompatibility of 3D printed zirconia. Also, current obstacles and a forecast of AM zirconia for its development and improvement have been covered. In summary, this review offers a description of the basic characteristics of AM zirconia materials intended for oral medicine. Furthermore, it provides a generally novel and fundamental basis for the utilization of 3D printed zirconia in dentistry.

11.
J Endocr Soc ; 7(6): bvad057, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37200849

ABSTRACT

Context: Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective: The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods: We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results: PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with ß-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion: Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the ß-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.

12.
FASEB J ; 25(11): 3803-14, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21784784

ABSTRACT

GPR39, a constitutively active 7TM receptor important for glucose-induced insulin secretion and maturation of pancreatic ß-cell function, is up-regulated in adipose tissue on abstinence from food and chemically induced diabetes. In the present study, we investigated the effect of GPR39 deficiency on body weight and adipocyte metabolism. GPR39-deficient mice were subjected to a high-fat diet and body composition, glucose tolerance, insulin secretion, food intake, and energy expenditure were evaluated. The cell biology of adipocyte metabolism was studied on both mRNA and protein levels. A significant increase in body weight corresponding to a 2-fold selective increase in fat mass was observed in GPR39-deficient mice fed a high-fat diet as compared with wild-type littermate controls fed the same diet. The GPR39-deficient animals had similar food intake but displayed almost eliminated diet-induced thermogenesis, measured by the oxygen consumption rate (Vo(2)) on change from normal to high-fat diet. Analysis of the adipose tissue for lipolytic enzymes demonstrated decreased level of phosphorylated hormone-sensitive lipase (HSL) and a decreased level of adipose triglyceride lipase (ATGL) by 35 and 60%, respectively, after food withdrawal in the GPR39-deficient mice. Extracellular signal-regulated kinases (ERK1/2), a signaling pathway known to be important for lipolysis, was decreased by 56% in the GPR39-deficient mice. GPR39 deficiency is associated with increased fat accumulation on a high-fat diet, conceivably due to decreased energy expenditure and adipocyte lipolytic activity.


Subject(s)
Adipocytes/metabolism , Obesity/metabolism , Receptors, G-Protein-Coupled/deficiency , Animals , Diet, High-Fat , Energy Metabolism , Female , Gene Expression Profiling , Lipid Metabolism/genetics , Male , Mice , Oxygen Consumption
13.
Nat Commun ; 13(1): 1061, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35217640

ABSTRACT

Extensive knowledge has been gained on the transcription network controlled by ERα, however, the mechanism underlying ESR1 (encoding ERα) expression is less understood. We recently discovered that the Hippo pathway is required for the proper expression of ESR1. YAP/TAZ are transcription coactivators that are phosphorylated and inhibited by the Hippo pathway kinase LATS. Here we delineated the molecular mechanisms underlying ESR1 transcription repression by the Hippo pathway. Mechanistically, YAP binds to TEAD to increase local chromatin accessibility to stimulate transcription of nearby genes. Among the YAP target genes, Vestigial-Like Protein 3 (VGLL3) competes with YAP/TAZ for binding to TEAD transcription factor and recruits the NCOR2/SMRT repressor to the super-enhancer of ESR1 gene, leading to epigenetic alteration and transcriptional silencing. We developed a potent LATS inhibitor VT02956. Targeting the Hippo pathway by VT02956 represses ESR1 expression and inhibits the growth of ER+ breast cancer cells as well as patient-derived tumour organoids. Moreover, histone deacetylase inhibitors, such as Entinostat, induce VGLL3 expression to inhibit ER+ breast cancer cells. Our study suggests LATS as unexpected cancer therapeutic targets, especially for endocrine-resistant breast cancers.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Hippo Signaling Pathway , Female , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/metabolism
14.
Dev Comp Immunol ; 128: 104312, 2022 03.
Article in English | MEDLINE | ID: mdl-34767880

ABSTRACT

The BTLA and HVEM are two well-characterized immune checkpoint inhibitors in humans and other mammalian species. However, the occurrence and functionality of these two molecules in non-mammalian species remain poorly understood. In the present study, we identified the BTLA and HVEM homologs from large yellow croaker (Larimichthys crocea), an economically important marine species of the perciform fish family. The Larimichthys crocea BTLA and HVEM (LcBTLA and LcHVEM) share conserved structural features to their mammalian counterparts, and they were expressed in various tissues and cells examined at different transcriptional levels, with particular abundance in immune-relevant tissues and splenic leukocytes. Immunofluorescence staining and flow cytometry analysis showed that LcHVEM and LcBTLA proteins were distributed on MHC-II+ APCs and CD4-2+ T cells, and a strong interaction between LcBTLA and LcHVEM was detected in splenic leukocytes in the mixed lymphocyte reaction (MLR). By blockade assays using anti-LcBTLA and anti-LcHVEM Abs as well as recombinant soluble LcBTLA and LcHVEM proteins in different combinations, it was found that LcBTLA-LcHVEM interactions play an important inhibitory role in the activation of alloreactive T cells using MLR as a model, and APC-initiated antigen-specific CD4-2+ T cells in response to A. hydrophila (A. h) stimulation. These observations highlight the extensive functional roles of LcBTLA and LcHVEM immune-checkpoint inhibitors in allogeneic T cell reactions, and CD4-2+ T cell-mediated adaptive immune responses in Larimichthys crocea. Thus, the BTLA-HVEM checkpoint may represent an ancient coinhibitory pathway, which was originated in fish and was conserved from fish to mammals throughout the vertebrate evolution.


Subject(s)
Perciformes , Receptors, Tumor Necrosis Factor, Member 14 , Animals , Lymphocyte Activation , Mammals , Perciformes/metabolism , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Receptors, Tumor Necrosis Factor, Member 14/metabolism , T-Lymphocytes
15.
Dev Comp Immunol ; 134: 104460, 2022 09.
Article in English | MEDLINE | ID: mdl-35667467

ABSTRACT

CD40 and CD154 are well-characterized costimulatory molecules involved in adaptive humoral immunity in humans and other mammals. These two costimulatory molecules were found to be originated from teleost fish during vertebrate evolution. However, the functionality of fish CD40 and CD154 remains to be explored. In this study, we identified the CD40 and CD154 homologs (LcCD40 and LcCD154) from large yellow croaker (Larimichthys crocea), a marine species of the perciform fish family. The LcCD40 and LcCD154 share conserved structural features to their mammalian counterparts, and are widely expressed in immune-relevant tissues and leukocytes at different transcriptional levels. Immunofluorescence staining and FCM analysis showed that LcCD40 and LcCD154 proteins are distributed on MHC-II+ APCs and CD4-2+ T cells, and are significantly upregulated in response to antigen stimulation. Co-IP assay exhibited strong association between LcCD40 and LcCD154 proteins. Blockade of LcCD154 with anti-LcCD154 antibody (Ab) or recombinant soluble LcCD40-Ig fusion protein remarkably decreased the MHC-II+ APC-initiated CD4+ T cell response upon Aeromonas hydrophila stimulation, and alloreactive T cell activation as examined by mixed lymphocyte reaction (MLR). These findings highlight the costimulatory role of LcCD40 and LcCD154 in T cell activities in Larimichthys crocea. Thus, the CD40 and CD154 costimulators may extensively participate in the regulation of multiple T cell-mediated immune responses in teleost fish. It is anticipated that this study would provide a cross-species understanding of the evolutionary history of CD40 and CD154 costimulatory signals from fish to mammals.


Subject(s)
Perciformes , T-Lymphocytes , Animals , CD40 Antigens/genetics , CD40 Ligand/genetics , Interleukin-2 , Lymphocyte Activation , Mammals
16.
Cancer Discov ; 12(2): 502-521, 2022 02.
Article in English | MEDLINE | ID: mdl-34615656

ABSTRACT

Glioblastoma (GBM) is the most lethal primary brain cancer characterized by therapeutic resistance, which is promoted by GBM stem cells (GSC). Here, we interrogated gene expression and whole-genome CRISPR/Cas9 screening in a large panel of patient-derived GSCs, differentiated GBM cells (DGC), and neural stem cells (NSC) to identify master regulators of GSC stemness, revealing an essential transcription state with increased RNA polymerase II-mediated transcription. The YY1 and transcriptional CDK9 complex was essential for GSC survival and maintenance in vitro and in vivo. YY1 interacted with CDK9 to regulate transcription elongation in GSCs. Genetic or pharmacologic targeting of the YY1-CDK9 complex elicited RNA m6A modification-dependent interferon responses, reduced regulatory T-cell infiltration, and augmented efficacy of immune checkpoint therapy in GBM. Collectively, these results suggest that YY1-CDK9 transcription elongation complex defines a targetable cell state with active transcription, suppressed interferon responses, and immunotherapy resistance in GBM. SIGNIFICANCE: Effective strategies to rewire immunosuppressive microenvironment and enhance immunotherapy response are still lacking in GBM. YY1-driven transcriptional elongation machinery represents a druggable target to activate interferon response and enhance anti-PD-1 response through regulating the m6A modification program, linking epigenetic regulation to immunomodulatory function in GBM.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Immunotherapy , Animals , Brain Neoplasms/genetics , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Humans , Male , Mice , Middle Aged , Neoplastic Stem Cells/metabolism , Tumor Microenvironment
17.
Fish Shellfish Immunol Rep ; 2: 100038, 2021 Dec.
Article in English | MEDLINE | ID: mdl-36420488

ABSTRACT

CD40 and CD154 are one of the best-characterized costimulatory molecules essential for adaptive immunity, which extensively involved in T and B cell activation, IgM Ab production, isotype class switching, germinal center formation and affinity maturation. However, the functionality of CD40 and CD154 in IgZ-mediated immunity remains limited. In this study, we explored the regulatory role of Cd40-Cd154 interaction in IgZ-mediated antibacterial immunity in zebrafish. The results showed that the IgZ-mediated antibacterial response can be significantly induced in response to A. hydrophila infection. The percentage of Cd40+IgZ+ B cells and the production of IgZ Ab were substantially increased upon A. hydrophila stimulation, but these reactions were markedly declined in Cd154 blockade fish by administering anti-Cd154 Ab or recombinant sCd40-Ig protein, accompanied with the impairment of the vaccine-initiated IgZ-mediated immunoprotection of fish against A. hydrophila infection. These observations suggested the essential role of Cd40-Cd154 interaction in IgZ-mediated bacterial immunity. Notably, the Cd40 and Cd154 costimulatory signals are required for a TD antigen-induced IgZ immunity, but are not indispensable for a TI antigen-induced IgZ immune response. These findings indicated the differential role of Cd40-Cd154 interaction in bacterial TD and TI antigen-induced IgZ immunity, which suggested the existence of diverse regulatory mechanisms underlying IgZ-mediated antibacterial immune reactions. To our knowledge, this is the first report to show the functional role of Cd40-Cd154 costimulatory signaling pathway in IgZ-mediated immune defense against bacterial infection. We hope this study will improve the current understanding of the coevolution between the IgZ/IgT immunoglobins and CD40/CD154 costimulatory molecules.

18.
Chem Sci ; 12(42): 14260-14269, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34760212

ABSTRACT

Controlling supramolecular self-assembly across multiple length scales to prepare gels with localised properties is challenging. Most strategies concentrate on fabricating gels with heterogeneous components, where localised properties are generated by the stimuli-responsive component. Here, as an alternative approach, we use a spiropyran-modified surface that can be patterned with light. We show that light-induced differences in surface chemistry can direct the bulk assembly of a low molecular weight gelator, 2-NapAV, meaning that mechanical gel properties can be controlled by the surface on which the gel is grown. Using grazing incidence X-ray diffraction and grazing incidence small angle X-ray scattering, we demonstrate that the origin of the different gel properties relates to differences in the architectures of the gels. This provides a new method to prepare a single domain (i.e., chemically homogeneous) hydrogel with locally controlled (i.e., mechanically heterogeneous) properties.

19.
Mol Metab ; 49: 101207, 2021 07.
Article in English | MEDLINE | ID: mdl-33711555

ABSTRACT

OBJECTIVES: Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS: Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS: The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS: The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.


Subject(s)
Gastrointestinal Hormones/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Animals , Appetite Regulation , Bariatric Surgery , Body Weight , Eating , Enteroendocrine Cells , Gastric Inhibitory Polypeptide/pharmacology , Ghrelin/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Peptide YY/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone , Weight Loss
20.
Cell Rep ; 31(3): 107532, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320655

ABSTRACT

Cisplatin is an antineoplastic drug administered at suboptimal and intermittent doses to avoid life-threatening effects. Although this regimen shortly improves symptoms in the short term, it also leads to more malignant disease in the long term. We describe a multilayered analysis ranging from chromatin to translation-integrating chromatin immunoprecipitation sequencing (ChIP-seq), global run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and ribosome profiling-to understand how cisplatin confers (pre)malignant features by using a well-established ovarian cancer model of cisplatin exposure. This approach allows us to segregate the human transcriptome into gene modules representing distinct regulatory principles and to characterize that the most cisplatin-disrupted modules are associated with underlying events of super-enhancer plasticity. These events arise when cancer cells initiate without ultimately ending the program of drug-stimulated death. Using a PageRank-based algorithm, we predict super-enhancer regulator ISL1 as a driver of this plasticity and validate this prediction by using CRISPR/dCas9-KRAB inhibition (CRISPRi) and CRISPR/dCas9-VP64 activation (CRISPRa) tools. Together, we propose that cisplatin reprograms cancer cells when inducing them to undergo near-to-death experiences.


Subject(s)
Antineoplastic Agents/therapeutic use , Cisplatin/therapeutic use , Enhancer Elements, Genetic/genetics , Neoplasms/genetics , Transcription, Genetic/genetics , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL