Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Molecules ; 28(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513433

ABSTRACT

Electrochemical oxidation of 1-R-substituted silatranes 1 (R = Me, vinyl, (CH2)2CN, CH2Ph, CH2(C10H7), Ph, C6H4Me, p-Cl-C6H4, Cl)-classical representatives of pentacoordinated silicon compounds-and the formation of their short living cation radicals upon reversible or quasi-reversible one-electron withdrawal were studied by means of cyclic and square-wave voltammetry, faradaic impedance spectroscopy and real-time temperature-dependent EPR spectroelectrochemistry supported by DFT B3PW91/6-311++G(d,p) (C-PCM, acetonitrile) calculations. The main reaction responsible for the decay of 1+• is shown to be their deprotonation, and ways of increasing the stability of these species are proposed.

2.
Molecules ; 26(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466467

ABSTRACT

A number of mono- and dioligosilanylated silocanes were prepared. Compounds included silocanes with 1-methyl-1-tris(trimethylsilyl)silyl, 1,1-bis[tris(trimethylsilyl)silyl], and 1,1-bis[tris(trimethylsilyl)germyl] substitution pattern as well as two examples where the silocane silicon atom is part of a cyclosilane or oxacyclosilane ring. The mono-tris(trimethylsilyl)silylated compound could be converted to the respective silocanylbis(trimethylsilyl)silanides by reaction with KOtBu and in similar reactions the cyclosilanes were transformed to oligosilane-1,3-diides. However, the reaction of the 1,1-bis[tris(trimethylsilyl)silylated] silocane with two equivalents of KOtBu leads to the replacement of one tris(trimethylsilyl)silyl unit with a tert-butoxy substituent followed by silanide formation via KOtBu attack at one of the SiMe3 units of remaining tris(trimethylsilyl)silyl group. For none of the silylated silocanes, signs of hypercoordinative interaction between the nitrogen and silicon silocane atoms were detected either in the solid state. by single crystal XRD analysis, nor in solution by 29Si-NMR spectroscopy. This was further confirmed by cyclic voltammetry and a DFT study, which demonstrated that the N-Si distance in silocanes is not only dependent on the energy of a potential N-Si interaction, but also on steric factors and through-space interactions of the neighboring groups at Si and N, imposing the orientation of the pz(N) orbital relative to the N-Si-X axis.


Subject(s)
Organosilicon Compounds/chemistry , Silanes/chemistry , Silicon/chemistry
3.
Chemistry ; 20(30): 9357-66, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24981992

ABSTRACT

In the presence of PMe3 or N-heterocyclic carbenes, the reaction of oligosilanylene dianions with GeCl2⋅dioxane gives germylene-base adducts. After base abstraction, the free germylenes can dimerize by formation of a digermene. An electrochemical and theoretical study of a bicyclic tetrasilylated digermene revealed formation of a comparably stable radical anion and a more reactive radical cation, which were characterized further by UV/Vis and ESR spectroscopy.

4.
ChemSusChem ; 13(12): 3137-3146, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32329561

ABSTRACT

Various forms of germanium and germanium-containing compounds and materials are actively investigated as energy-intensive alternatives to graphite as the anode of lithium-ion batteries. The most accessible form-germanium dioxide-has the structure of a 3D polymer, which accounts for its rapid destruction during cycling, and requires the development of further approaches to the production of nanomaterials and various composites based on it. For the first time, we propose here the strategy of using 2-carboxyethylgermanium sesquioxide ([O1.5 GeCH2 CH2 CO2 H]n , 2-CEGS), in lieu of GeO2 , as a promising, energy-intensive, and stable new source system for building lithium-ion anodes. Due to the presence of the organic substituent, the formed polymer has a 1D or a 2D space organization, which facilitates the reversible penetration of lithium into its structure. 2-CEGS is common and commercially available, completely safe and non-toxic, insoluble in organic solvents (which is important for battery use) but soluble in water (which is convenient for manufacturing diverse materials from it). This paper reports the preparation of micro- (flower-shaped agglomerates of ≈1 µm thick plates) and nanoformed (needle-shaped nanoparticles of ≈500×(50-80) nm) 2-CEGS using methods commonly available in laboratories and industry such as vacuum and freeze-drying of aqueous solutions of 2-CEGS. Lithium half-cell anodes based on 2-CEGS show a capacity of ≈400 mAh g-1 for microforms and up to ≈700 mAh g-1 for nanoforms, which is almost two times higher than the maximal theoretical capacity of graphite. These anodes are stable during the cycling at various rates. The results of DFT simulations suggest that Li atoms form the stable Li2 O with the oxygen atoms of 2-CEGS, and actual charge-discharge cycles involve deoxygenated GeC3 H5 molecules. Thus, C3 chains loosen the anode structure compared to pure Ge, improving its ability to accommodate Li ions.

5.
Dalton Trans ; 47(47): 17127-17133, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30467566

ABSTRACT

3,5-di-tert-Butylcatecholate (DTBC) germanium complexes (DTBC)2Ge[Py(CN)n]2 (n = 0…2) have been synthesized from GeO2, 3,5-di-tert-butylcatechol and cyano-substituted pyridines Py(CN)n and characterized by elemental analysis, NMR, IR and UV-VIS spectroscopy. The structure of 1 (with 4-cyanopyridine) has been determined by X-ray single crystal analysis. UV-VIS spectra have shown that these complexes are stable in CH3CN, toluene and CH2Cl2 solutions; in contrast, they are rapidly decomposed by dimethylformamide and tetrahydrofuran. Complexes 1 and 2 (with 4-cyano and 3-cyanopyridine) are electrochemically reducible in toluene/1 M Bu4NPF6 at E = -1.3…-1.7 V vs. AgCl. The quantum-chemical study of these complexes is in accordance with the unsuccessful attempts to obtain analogous derivatives with 2-cyanopyridine and 2,6-dicyanopyridine.

6.
Organometallics ; 36(2): 342-351, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28133409

ABSTRACT

Several silatranyl -substituted oligosilanes were prepared starting from bis(trimethylsilyl)silatranylsilanide. Electrochemical and theoretical investigations of some oligosilanes revealed that electrooxidation occurs by formation of a short-lived cation radical. This species undergoes structural relaxation to form a pair of conformers, with endo and exo relationships with respect to the Si-N interaction. Reaction of a 1,4-disilatranyl-1,4-disilanide with 1,2-dichlorotetramethyldisilane gave a mixture of cis and trans diastereomers of a cyclohexasilane with the trans isomer showing a diminished Si-N distance.

SELECTION OF CITATIONS
SEARCH DETAIL