ABSTRACT
KBG syndrome (KBGS) is characterized by distinctive facial gestalt, short stature and variable clinical findings. With ageing, some features become more recognizable, allowing a differential diagnosis. We aimed to better characterize natural history of KBGS. In the context of a European collaborative study, we collected the largest cohort of KBGS patients (49). A combined array- based Comparative Genomic Hybridization and next generation sequencing (NGS) approach investigated both genomic Copy Number Variants and SNVs. Intellectual disability (ID) (82%) ranged from mild to moderate with severe ID identified in two patients. Epilepsy was present in 26.5%. Short stature was consistent over time, while occipitofrontal circumference (median value: -0.88 SD at birth) normalized over years. Cerebral anomalies, were identified in 56% of patients and thus represented the second most relevant clinical feature reinforcing clinical suspicion in the paediatric age when short stature and vertebral/dental anomalies are vague. Macrodontia, oligodontia and dental agenesis (53%) were almost as frequent as skeletal anomalies, such as brachydactyly, short fifth finger, fifth finger clinodactyly, pectus excavatum/carinatum, delayed bone age. In 28.5% of individuals, prenatal ultrasound anomalies were reported. Except for three splicing variants, leading to a premature termination, variants were almost all frameshift. Our results, broadening the spectrum of KBGS phenotype progression, provide useful tools to facilitate differential diagnosis and improve clinical management. We suggest to consider a wider range of dental anomalies before excluding diagnosis and to perform a careful odontoiatric/ear-nose-throat (ENT) evaluation in order to look for even submucosal palate cleft given the high percentage of palate abnormalities. NGS approaches, following evidence of antenatal ultrasound anomalies, should include ANKRD11.
Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Dwarfism , Intellectual Disability , Tooth Abnormalities , Pregnancy , Female , Humans , Facies , Tooth Abnormalities/genetics , Bone Diseases, Developmental/genetics , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Comparative Genomic Hybridization , Repressor Proteins/genetics , Phenotype , Dwarfism/genetics , European PeopleABSTRACT
PURPOSE: KBG syndrome (KBGS) is a rare neurodevelopmental syndrome caused by haploinsufficiency of ANKRD11. The childhood phenotype is extensively reported but limited for adults. Thus, we aimed to delineate the clinical features of KBGS. METHODS: We collected physician-reported data of adults with molecularly confirmed KBGS through an international collaboration. Moreover, we undertook a systematic literature review to determine the scope of previously reported data. RESULTS: The international collaboration identified 36 adults from 31 unrelated families with KBGS. Symptoms included mild/borderline intellectual disability (n = 22); gross and/or fine motor difficulties (n = 15); psychiatric and behavioral comorbidities including aggression, anxiety, reduced attention span, and autistic features (n = 26); nonverbal (n = 3), seizures with various seizure types and treatment responses (n = 10); ophthalmological comorbidities (n = 20). Cognitive regression during adulthood was reported once. Infrequent features included dilatation of the ascending aorta (n = 2) and autoimmune conditions (n = 4). Education, work, and residence varied, and the diversity of professional and personal roles highlighted the range of abilities seen. The literature review identified 154 adults reported across the literature, and we have summarized the features across both data sets. CONCLUSION: Our study sheds light on the long-term neurodevelopmental outcomes, seizures, behavioral and psychiatric features, and education, work, and living arrangements for adults with KBGS.
Subject(s)
Intellectual Disability , Phenotype , Humans , Adult , Intellectual Disability/genetics , Intellectual Disability/epidemiology , Male , Female , Middle Aged , Young Adult , Haploinsufficiency/genetics , Seizures/genetics , Seizures/epidemiology , Physicians , Adolescent , Facies , Abnormalities, Multiple , Bone Diseases, Developmental , Tooth AbnormalitiesABSTRACT
A small but growing body of scientific literature is emerging about clinical findings in patients with 19p13.3 microdeletion or duplication. Recently, a proximal 19p13.3 microduplication syndrome was described, associated with growth delay, microcephaly, psychomotor delay and dysmorphic features. The aim of our study was to better characterize the syndrome associated with duplications in the proximal 19p13.3 region (prox 19p13.3 dup), and to propose a comprehensive analysis of the underlying genomic mechanism. We report the largest cohort of patients with prox 19p13.3 dup through a collaborative study. We collected 24 new patients with terminal or interstitial 19p13.3 duplication characterized by array-based Comparative Genomic Hybridization (aCGH). We performed mapping, phenotype-genotype correlations analysis, critical region delineation and explored three-dimensional chromatin interactions by analyzing Topologically Associating Domains (TADs). We define a new 377 kb critical region (CR 1) in chr19: 3,116,922-3,494,377, GRCh37, different from the previously described critical region (CR 2). The new 377 kb CR 1 includes a TAD boundary and two enhancers whose common target is PIAS4. We hypothesize that duplications of CR 1 are responsible for tridimensional structural abnormalities by TAD disruption and misregulation of genes essentials for the control of head circumference during development, by breaking down the interactions between enhancers and the corresponding targeted gene.
Subject(s)
Abnormalities, Multiple , Microcephaly , Humans , Comparative Genomic Hybridization , Abnormalities, Multiple/genetics , Microcephaly/genetics , Syndrome , Genetic Association StudiesABSTRACT
Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.
Subject(s)
DiGeorge Syndrome , Down Syndrome , Epilepsy , Intellectual Disability , Microcephaly , Humans , Chromosomes, Human, Pair 1 , Muscle Hypotonia , Chromosome Deletion , PhenotypeABSTRACT
PURPOSE: We aimed to investigate the molecular basis of a novel recognizable neurodevelopmental syndrome with scalp and enamel anomalies caused by truncating variants in the last exon of the gene FOSL2, encoding a subunit of the AP-1 complex. METHODS: Exome sequencing was used to identify genetic variants in all cases, recruited through Matchmaker exchange. Gene expression in blood was analyzed using reverse transcription polymerase chain reaction. In vitro coimmunoprecipitation and proteasome inhibition assays in transfected HEK293 cells were performed to explore protein and AP-1 complex stability. RESULTS: We identified 11 individuals from 10 families with mostly de novo truncating FOSL2 variants sharing a strikingly similar phenotype characterized by prenatal growth retardation, localized cutis scalp aplasia with or without skull defects, neurodevelopmental delay with autism spectrum disorder, enamel hypoplasia, and congenital cataracts. Mutant FOSL2 messenger RNAs escaped nonsense-mediated messenger RNA decay. Truncated FOSL2 interacts with c-JUN, thus mutated AP-1 complexes could be formed. CONCLUSION: Truncating variants in the last exon of FOSL2 associate a distinct clinical phenotype by altering the regulatory degradation of the AP-1 complex. These findings reveal a new role for FOSL2 in human pathology.
Subject(s)
Autism Spectrum Disorder , Ectodermal Dysplasia , Neurodevelopmental Disorders , Humans , Scalp/abnormalities , Scalp/metabolism , Autism Spectrum Disorder/genetics , HEK293 Cells , Transcription Factor AP-1/genetics , Exons/genetics , Ectodermal Dysplasia/genetics , Neurodevelopmental Disorders/genetics , RNA, Messenger , Fos-Related Antigen-2/geneticsABSTRACT
BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.
Subject(s)
De Lange Syndrome , Nuclear Proteins , Cell Cycle Proteins/genetics , Child , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Female , Genomics , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Pregnancy , Transcription Factors/geneticsABSTRACT
Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance.
Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Humans , Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/genetics , Mutation, Missense , Carrier Proteins/genetics , Ubiquitin-Protein Ligases/geneticsABSTRACT
BACKGROUND: We studied a young woman with atypical diabetes associated with mild intellectual disability, lymphedema distichiasis syndrome (LDS) and polymalformative syndrome including distichiasis. We used different genetic tools to identify causative pathogenic mutations and/or copy number variations. RESULTS: Although proband's, diabetes mellitus occurred during childhood, type 1 diabetes was unlikely due to the absence of detectable autoimmunity. DNA microarray analysis first identified a de novo, heterozygous deletion at the chr16q24.2 locus. Previously, thirty-three pathogenic or likely pathogenic deletions encompassing this locus have been reported in patients presenting with intellectual deficiency, obesity and/or lymphedema but not with diabetes. Of note, the deletion encompassed two topological association domains, whose one included FOXC2 that is known to be linked with LDS. Via whole-exome sequencing, we found a heterozygous, likely pathogenic variant in WFS1 (encoding wolframin endoplasmic reticulum [ER] transmembrane glycoprotein) which was inherited from her father who also had diabetes. WFS1 is known to be involved in monogenic diabetes. We also found a likely pathogenic variant in USP9X (encoding ubiquitin specific peptidase 9 X-linked) that is involved in X-linked intellectual disability, which was inherited from her mother who had dyscalculia and dyspraxia. CONCLUSIONS: Our comprehensive genetic analysis suggested that the peculiar phenotypes of our patient were possibly due to the combination of multiple genetic causes including chr16q24.2 deletion, and two likely pathogenic variants in WFS1 and USP9X.
Subject(s)
Diabetes Mellitus , Hair Diseases , Intellectual Disability , DNA Copy Number Variations/genetics , Eyelashes/abnormalities , Female , Heterozygote , Humans , Intellectual Disability/genetics , Lymphedema , Phenotype , Syndrome , Ubiquitin Thiolesterase/geneticsABSTRACT
Prolidase is a ubiquitous enzyme that plays a major role in the metabolism of proline-rich proteins. Prolidase deficiency is a rare autosomal recessive inborn metabolic and multisystemic disease, characterized by a protean association of symptoms, namely intellectual disability, recurrent infections, splenomegaly, skin lesions, auto-immune disorders and cytopenia. To our knowledge, no published review has assembled the different clinical data and research studies over prolidase deficiency. The aim of this study is to summarize the actual state of the art from the descriptions of all the patients with a molecular diagnosis of prolidase deficiency reported to date regarding the clinical, biological, histopathological features, therapeutic options and functional studies.
ABSTRACT
OBJECTIVE: To describe the genetic and phenotypic spectrum of Usher syndrome after 6 years of studies by next-generation sequencing, and propose an up-to-date classification of Usher genes in patients with both visual and hearing impairments suggesting Usher syndrome, and in patients with seemingly isolated deafness. STUDY DESIGN: The systematic review and meta-analysis protocol was based on Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed 1) a meta-analysis of data from 11 next-generation sequencing studies in 684 patients with Usher syndrome; 2) a meta-analysis of data from 21 next-generation studies in 2,476 patients with seemingly isolated deafness, to assess the involvement of Usher genes in seemingly nonsyndromic hearing loss, and thus the proportion of patients at high risk of subsequent retinitis pigmentosa (RP); 3) a statistical analysis of differences between parts 1) and 2). RESULTS: In patients with both visual and hearing impairments, the biallelic disease-causing mutation rate was assessed for each Usher gene to propose a classification by frequency: USH2A: 50% (341/684) of patients, MYO7A: 21% (144/684), CDH23: 6% (39/684), ADGRV1: 5% (35/684), PCDH15: 3% (21/684), USH1C: 2% (17/684), CLRN1: 2% (14/684), USH1G: 1% (9/684), WHRN: 0.4% (3/684), PDZD7 0.1% (1/684), CIB2 (0/684). In patients with seemingly isolated sensorineural deafness, 7.5% had disease-causing mutations in Usher genes, and are therefore at high risk of developing RP. These new findings provide evidence that usherome dysfunction is the second cause of genetic sensorineural hearing loss after connexin dysfunction. CONCLUSION: These results promote generalization of early molecular screening for Usher syndrome in deaf children.