Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Small ; : e2307542, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38044288

ABSTRACT

With the rapid development of human-friendly wearable devices, energy storage components are required to have skin-like stretchability or free-form to fit closer and more comfortably to the human body. This study introduces a hierarchically interpenetrated reentrant microcellular structure combined with 2D cellular graphene/MXene/carbon nanotubes (CNTs) and 3D cellular melamine foam. This composite structure works as a stretchable framework of lithium metal composite electrodes to provide stretchability for lithium metal electrodes, which are promising as next-generation energy storage systems. The interpenetrated but independent cellular structures successfully obtain stable structural deformability from the nonconductive and deformable melamine foam, while at the same time, high electrical conductivity, lithiophilicity, and mechanical stability of the graphene/CNT/MXene network serve as a lithium deposition support during the electrodeposition of lithium. The reentrant structure is fabricated by radial compressing the hierarchical cellular structures to take advantage of the structural stretchability of the accordion-like reentrant frameworks. The lithium-deposited composite electrodes exhibit much lower overpotential during Li stripping and plating than lithium metal foil anodes and show stable electrochemical performances under 30% of mechanical strain. The reentrant microcellular electrodes offer great potential for advanced designs of lithium metal electrodes for stretchable batteries with high energy density.

2.
Small ; 18(52): e2205355, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36333117

ABSTRACT

The growth of lithium (Li) dendrites reduces the lifespan of Li-metal batteries and causes safety issues. Herein, hierarchically porous aramid nanofiber separators capable of effectively suppressing the Li dendrite growth while maintaining highly stable cycle performances at high charge/discharge rates are reported. A two-step solvent exchange process combined with reprotonation-mediated self-assembly is utilized to control the bimodal porous structure of the separators. In particular, when ethanol and water are used sequentially, aramid nanofibers form hierarchical porous structures containing nanopores in macroporous polymer frameworks to yield a mechanically robust membrane with high porosity of 97% or more. The optimized samples exhibit high ionic conductivities of 1.87-4.04 mS cm-1 and high Li-ion transference numbers of 0.77-0.84 because of the ultrahigh porosity and selective affinity to anions. Li-metal symmetric cells do not show any noticeable presence of dendrites after 100 cycles, and they operate stably for more than 1500 cycles even under extreme conditions with a high current density of >20 mA cm-2 . In addition, the LiFePO4 /Li full cell retains 86.3% of its capacity after 1000 cycles at a charge rate of 30 C.

3.
ACS Appl Mater Interfaces ; 13(45): 54301-54307, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34748312

ABSTRACT

Research on the chiral magneto-optical properties of inorganic nanomaterials has enabled novel applications in advanced optical and electronic devices. However, the corresponding chiral magneto-optical responses have only been studied under strong magnetic fields of ≥1 T, which limits the wider application of these novel materials. In this paper, we report on the enhanced chiral magneto-optical activity of supra-assembled Fe3O4 magnetite nanoparticles in the visible range at weak magnetic fields of 1.5 mT. The spherical supra-assembled particles with a diameter of ∼90 nm prepared by solvothermal synthesis had single-crystal-like structures, which resulted from the oriented attachment of nanograins. They exhibited superparamagnetic behavior even with a relatively large supraparticle diameter that exceeded the size limit for superparamagnetism. This can be attributed to the small size of nanograins with a diameter of ∼12 nm that constitute the suprastructured particles. Magnetic circular dichroism (MCD) measurements at magnetic fields of 1.5 mT showed distinct chiral magneto-optical activity from charge transfer transitions of magnetite in the visible range. For the supraparticles with lower crystallinity, the MCD peaks in the 250-550 nm range assigned as the ligand-to-metal charge transfer (LMCT) and the inter-sublattice charge transfer (ISCT) show increased intensities in comparison to those with higher crystallinity samples. On the contrary, the higher crystallinity sample shows higher MCD intensities near 600-700 nm for the intervalence charge transfer (IVCT) transition. The differences in MCD responses can be attributed to the crystallinity determined by the reaction time, lattice distortion near grain boundaries of the constituent nanocrystals, and dipolar interactions in the supra-assembled structures.

4.
ACS Appl Mater Interfaces ; 11(51): 48476-48486, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31769643

ABSTRACT

Transfer methods to displace active functional layers onto desired surfaces have been developed for the fabrication of nanostructured thin film devices. However, multiple transfers with highly polar surfaces were not yet fully demonstrated presumably due to difficulty in the control of the competitive adhesions at interfaces. In this study, we present adhesion-assisted multiple transfer methods for the fabrication of highly ordered nanolaminated structures with layer-by-layer (LbL) assembled films composed of various functional nanomaterials. The interfacial adhesions were controlled with adhesive layers having a thickness of only 2.5 nm for the successful transfer of the LbL nanofunctional films from the donor substrates to the receiver substrates, which was determined mainly by the major functional moieties at the contact surfaces. The root-mean-square roughness should be lower than 200 nm for conformal contact in the transfer. The versatility of the proposed method was demonstrated with various functional Au, silica, ZnO, and TiO2 nanoparticles as constituent materials and various types of substrates including Si wafer, glass, and polyethylene terephthalate surfaces. The fabricated films with periodic depositions of two different materials could exhibit photoreflective properties with high-order reflection peaks, which were simply tunable by adjusting the order in the multiple transfer. This transfer method could effectively reduce the cost and time in the nanofabrication as it did not require costly equipment, harsh synthesis conditions, and hazardous solvents.

5.
J Phys Chem Lett ; 8(8): 1872-1877, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28394612

ABSTRACT

Chiral nanomaterials are characterized by handedness morphology on the nanoscale, manifested as preferential interaction with circularly polarized light. However, the origin of this light-matter interaction remains elusive. Here we simulated a model of chiral helical arrays of plasmonic nanoparticles with central anisotropic nanopillars to examine the effect of birefringence on the collective chiroptical response. Contrary to typical assumptions in previous works, we varied the biaxial refractive indices of the central nanopillars and observed a significant modulation of optical activity by calculating and characterizing circular dichroism (CD) spectra. The chiroptical response exhibited a sign change compared with that of the isotropic condition in a specific parametric range of negative birefringence. In addition, the CD peak increased by 3 to 16 as the ordinary refractive index increased from 1.5 to 3.0. These results are likely to be useful for designing chiral nanomaterials for applications in metamaterials, biosensors, and optoelectrical devices.

6.
J Colloid Interface Sci ; 493: 371-377, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28126610

ABSTRACT

Silver nanowires (AgNWs) have drawn much attention as potential candidates to replace conventional transparent conductive materials such as indium tin oxide (ITO). AgNWs have advantages over ITO with respect to cost and ease of fabrication, and can be used in flexible electrodes. However, the preparation of homogeneous films from the AgNW colloidal suspension is still a challenge mainly because of the coagulation and sedimentation of AgNWs in aqueous media. In this study, uniform transparent conductive films were prepared by using AgNWs paired with poly(allylamine hydrochloride) (PAH) via the vortex-assisted layer-by-layer (VA-LbL) assembly method. We introduced poly(allylamine hydrochloride) (PAH) to bind the AgNWs to the substrates via coordination bonding. Vortex agitation was also applied during the adsorption of AgNWs to achieve a uniform deposition on the substrate. We systematically examined other experimental conditions such as the concentration of AgNW solution and temperature of the heat treatment to correlate them to the transparency and the conductivity of the films. In addition, AgNW films were prepared on transparent and flexible substrates and these exhibited excellent durability against bending (1000 bending cycles).

SELECTION OF CITATIONS
SEARCH DETAIL