Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Publication year range
1.
Opt Express ; 29(9): 13624-13640, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985094

ABSTRACT

Microelectromechanical systems (MEMS) are miniature devices integrated into a vast range of industrial and consumer applications. Optical MEMS are developed for dynamic spatiotemporal control in lightwave manipulation and communication as modulators, switches, multiplexers, spectrometer, etc. However, they have not been shown to function similarly in sub-nm wavelength regimes, namely, with hard x-rays, as high-brilliance pulsed x-rays have proven powerful for addressing challenges in time-domain science, from energy conversion to neurobiological control. While desirable temporal properties of x-ray pulses can be enhanced by optics, conventional x-ray optics are inherently massive in size, hence, never dynamic. We demonstrate highly ultrafast x-ray optics-on-a-chip based on MEMS capable of modulating hard x-ray pulses exceeding 350 MHz, 103× higher than any other mechanical modulator, with a pulse purity >106 without compromising the spectral brilliance. Moreover, the timing characteristics of the devices can be tuned on-the-fly to deliver optimal pulse properties to create a host of dynamic x-ray instruments and applications, impossible with traditional optics of 109× bulkier and more massive. The advent of the ultrafast optics-on-a-chip heralds a new paradigm of x-ray photonics, time-domain science, and accelerator diagnostics, especially at not only the future-generation light sources that offer coherent and high-frequency pulses but also lab-based facilities that normally do not offer timing structures.

2.
Nat Mater ; 15(9): 1023-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27348576

ABSTRACT

Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young's modulus that is 2-3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

3.
Nat Commun ; 10(1): 1158, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858369

ABSTRACT

Time-resolved and ultrafast hard X-ray imaging, scattering and spectroscopy are powerful tools for elucidating the temporal and spatial evolution of complexity in materials. However, their temporal resolution has been limited by the storage-ring timing patterns and X-ray pulse width at synchrotron sources. Here we demonstrate that dynamic X-ray optics based on micro-electro-mechanical-system resonators can manipulate hard X-ray pulses on time scales down to 300 ps, comparable to the X-ray pulse width from typical synchrotron sources. This is achieved by timing the resonators with the storage ring to diffract X-ray pulses through the narrow Bragg peak of the single-crystalline material. Angular velocities exceeding 107 degrees s-1 are reached while maintaining the maximum linear velocity well below the sonic speed and material breakdown limit. As the time scale of the devices shortens, the devices promise to spatially disperse the temporal width of X-rays, thus generating a temporal resolution below the pulse-width limit.

4.
Sci Rep ; 7(1): 3324, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607443

ABSTRACT

Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here, we show that laterally-confined excitons in monolayer MoS2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, the lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems.

5.
Nat Commun ; 8(1): 509, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894143

ABSTRACT

Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. The silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reaction dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.Minerals are rarely explored as building blocks for dynamic inorganic materials. Here, the authors derive inspiration from fish scales to create mutable surfaces based on arrays of calcite crystals, in which one end of each crystal is immobilized in and regenerated from silicone, and the other functional end is left exposed.

6.
ACS Nano ; 10(2): 2568-74, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26751281

ABSTRACT

Advanced scanning probe microscopies (SPMs) open up the possibilities of the next-generation ferroic devices that utilize both domains and domain walls as active elements. However, current SPMs lack the capability of dynamically monitoring the motion of domains and domain walls in conjunction with the transport of the screening charges that lower the total electrostatic energy of both domains and domain walls. Charge gradient microscopy (CGM) is a strong candidate to overcome these shortcomings because it can map domains and domain walls at high speed and mechanically remove the screening charges. Yet the underlying mechanism of the CGM signals is not fully understood due to the complexity of the electrostatic interactions. Here, we designed a semiconductor-metal CGM tip, which can separate and quantify the ferroelectric domain and domain wall signals by simply changing its scanning direction. Our investigation reveals that the domain wall signals are due to the spatial change of polarization charges, while the domain signals are due to continuous removal and supply of screening charges at the CGM tip. In addition, we observed asymmetric CGM domain currents from the up and down domains, which are originated from the different debonding energies and the amount of the screening charges on positive and negative bound charges. We believe that our findings can help design CGM with high spatial resolution and lead to breakthroughs in information storage and energy-harvesting devices.

7.
Sci Rep ; 6: 21999, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915398

ABSTRACT

Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

8.
Nanoscale ; 6(24): 15216-21, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25380519

ABSTRACT

Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications.

9.
Nat Commun ; 4: 2515, 2013.
Article in English | MEDLINE | ID: mdl-24071657

ABSTRACT

The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force has a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.

SELECTION OF CITATIONS
SEARCH DETAIL