Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Food Sci Technol ; 60(1): 252-261, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36349282

ABSTRACT

Acute lung injury (ALI), is a severe inflammatory lung disease. We tested the prophylactic effect of a functional food mix comprising three anti-inflammatory plant products: turmeric, amla, and black pepper (TAB) against lipopolysaccharide (LPS)-induced ALI in rats. Two-month-old male Wistar rats were randomly divided into three groups: control (C), LPS (5 mg/kg), and LPS with TAB (TAB). After 6 h of LPS injection, the rats were sacrificed by cervical decapitation to collect the lung tissue. Results showed that TAB partially ameliorated LPS-induced increase in circulating inflammatory cytokines (TNFα and IL6) and significantly prevented lung histopathological changes. TAB also suppressed LPS-activated ER stress markers (GRP78, pIRE1, and CHOP) and apoptotic markers (caspase-3 and - 12) in the lung. The anti-inflammatory effects of the TAB support its potential use as an adjuvant to mitigate ALI. Importantly, TAB's ingredients have been used for centuries as part of the diet with limited or no toxic effects.

2.
Chem Biol Interact ; 390: 110889, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38272248

ABSTRACT

The current study was designed to test a functional food (FF) mixture containing aldose reductase inhibitors and antiglycation bioactive compounds for suppressing the onset and progression of cataracts in a diabetic rat model. Two-month-old Sprague Dawley rats were grouped as control (C), diabetes untreated (D), and diabetic rats treated with FF at two doses (FF1 = 1.35 g and FF2 = 6.25 g/100g of diet). Diabetes was induced by a single injection of streptozotocin. The FF is a mixture of amla, turmeric, black pepper, cinnamon, ginger, and fenugreek added to the rodent diet. The status of cataracts was monitored weekly by a slit lamp examination for 20 weeks, after which animals were sacrificed to collect eye lenses. Feeding FF1 and FF2 to diabetic rats yielded a significant anti-hyperglycaemic effect and marginally prevented body weight loss. FF delayed cataract progression, and FF2 showed better efficacy than FF1. FF prevented the loss of lens crystallins and their insolubilization in diabetic rats. The antioxidant potential of FF was evident with the lowered protein carbonyls, lipid peroxidation, and prevention of altered antioxidant enzyme activities induced by diabetes. These studies demonstrate the efficacy of plant-derived dietary supplements against the onset and progression of cataracts in a well-established rat model of diabetic eye disease.


Subject(s)
Cataract , Diabetes Mellitus, Experimental , Lens, Crystalline , Rats , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Rodentia/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Rats, Sprague-Dawley , Functional Food , Cataract/drug therapy , Cataract/prevention & control , Aldehyde Reductase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL