Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Hum Mol Genet ; 20(21): 4116-31, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21816949

ABSTRACT

Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) are widely expressed in the vertebrate nervous system and play a central role in mature neuronal function. In vitro BDNF/TrkB signaling promotes neuronal survival and can help neurons resist toxic insults. Paradoxically, BDNF/TrkB signaling has also been shown, under certain in vitro circumstances, to render neurons vulnerable to insults. We show here that in vivo conditional deletion of TrkB from mature motor neurons attenuates mutant superoxide dismutase 1 (SOD1) toxicity. Mutant SOD1 mice lacking motor neuron TrkB live a month longer than controls and retain motor function for a longer period, particularly in the early phase of the disease. These effects are subserved by slowed motor neuron loss, persistence of neuromuscular junction integrity and reduced astrocytic and microglial reactivity within the spinal cord. These results suggest that manipulation of BDNF/TrkB signaling might have therapeutic efficacy in motor neuron diseases.


Subject(s)
Motor Neuron Disease/enzymology , Motor Neuron Disease/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation/genetics , Receptor, trkB/metabolism , Superoxide Dismutase/genetics , Amino Acid Substitution , Animals , Axons/metabolism , Axons/pathology , Denervation , Disease Progression , Ganglion Cysts/metabolism , Ganglion Cysts/pathology , Gene Deletion , Inclusion Bodies/metabolism , Inflammation/complications , Inflammation/pathology , Inflammation/physiopathology , Integrases/metabolism , Interneurons/metabolism , Interneurons/pathology , Longevity , Mice , Mice, Knockout , Motor Activity , Motor Neuron Disease/complications , Motor Neuron Disease/physiopathology , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Recombination, Genetic/genetics , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1 , Ubiquitin/metabolism , Ubiquitination , Vesicular Acetylcholine Transport Proteins/metabolism
2.
eNeuro ; 4(6)2017.
Article in English | MEDLINE | ID: mdl-29218323

ABSTRACT

The dendritic tree is a key determinant of neuronal information processing. In the motor system, the dendritic tree of spinal cord neurons undergoes dramatic remodeling in an activity-dependent manner during early postnatal life. This leads to the proper segmental spinal cord connectivity that subserves normal locomotor behavior. One molecular system driving the establishment of dendrite architecture of mammalian motor neurons relies on AMPA receptors (AMPA-Rs) assembled with the GluA1 subunit, and this occurs in an NMDA receptor (NMDA-R)-independent manner. The dendrite growth promoting activity of GluA1-containing AMPA-Rs depends on its intracellular binding partner, SAP97, and SAP97's PDZ3 domain. We show here that cysteine-rich interactor of PDZ3 (CRIPT) is a bona fide SAP97 PDZ3-domain binding partner, localizes to synapses with GluA1 and SAP97 along the dendritic tree, and is a determinant of the dendritic growth of mammalian spinal cord neurons. We further show that CRIPT has a well-conserved ortholog in the nematode, Caenorhabditis elegans, and animals lacking CRIPT display decreased dendrite branching of the well-studied PVD neuron in vivo. The lack of CRIPT leads to a selective defect in touch perception, and this is rescued by expression of wild-type (WT) human CRIPT (hCRIPT) in the nervous system. This work brings new light into the molecular machinery that drives dendritic growth during development and may prove relevant to the promotion of nervous system plasticity following insult.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dendrites , Membrane Proteins/metabolism , Neurogenesis/physiology , Spinal Cord/growth & development , Spinal Cord/metabolism , Animals , Caenorhabditis elegans , Discs Large Homolog 1 Protein , HEK293 Cells , Humans , Rats
3.
J Comp Neurol ; 476(2): 130-45, 2004 Aug 16.
Article in English | MEDLINE | ID: mdl-15248194

ABSTRACT

An integration center subserving locomotor leg movements resides in the upper lumbar spinal cord. If this neuronal network is preserved after a spinal cord injury, it is possible to stimulate this circuitry to initiate and promote walking. The several effective approaches (electrical stimulation, pharmacologic agents, physical therapy training programs) may all share a common modus operandi of altering synaptic activity within segmental spinal cord. To understand the neural substrate for the use-dependent behavioral improvement, we studied the dendritic architecture of spinal motor neurons. In the first experiment, we compared three groups of animals: animals with an intact spinal cord, animals that had a complete spinal cord transection (SCT) and animals with SCT who engaged in a daily exercise program of actively moving paralyzed hindlimbs through the motions of walking. When compared with animals with an intact spinal cord, the motor neurons from animals with SCT displayed marked atrophy, with loss of dendritic membrane and elimination of branching throughout the visible tree within transverse tissue slices. None of these regressive changes were found in the motor neurons from SCT animals that underwent exercise. In a second experiment, we inquired whether exercise of animals with an intact spinal cord influenced dendrite structure. Increased exercise had very modest effects on dendrite morphology, indicating an upper limit of use-dependent dendrite growth. Our findings suggest that the dendritic tree of motor neurons deprived of descending influences is rapidly pruned, and this finding is not observed in motor neurons after SCT if hindlimbs are exercised. The functional benefits of exercise after SCT injury may be subserved, in part, by stabilizing or remodeling the dendritic tree of motor neurons below the injury site.


Subject(s)
Dendrites/ultrastructure , Extremities/innervation , Extremities/physiopathology , Motor Activity , Motor Neurons/ultrastructure , Rats/anatomy & histology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Animals , Denervation , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL