Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Blood ; 137(15): 2033-2045, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33513601

ABSTRACT

Exocytosis of cytotoxic granules (CG) by lymphocytes is required for the elimination of infected and malignant cells. Impairments in this process underly a group of diseases with dramatic hyperferritinemic inflammation termed hemophagocytic lymphohistiocytosis (HLH). Although genetic and functional studies of HLH have identified proteins controlling distinct steps of CG exocytosis, the molecular mechanisms that spatiotemporally coordinate CG release remain partially elusive. We studied a patient exhibiting characteristic clinical features of HLH associated with markedly impaired cytotoxic T lymphocyte (CTL) and natural killer (NK) cell exocytosis functions, who beared biallelic deleterious mutations in the gene encoding the small GTPase RhoG. Experimental ablation of RHOG in a model cell line and primary CTLs from healthy individuals uncovered a hitherto unappreciated role of RhoG in retaining CGs in the vicinity of the plasma membrane (PM), a fundamental prerequisite for CG exocytotic release. We discovered that RhoG engages in a protein-protein interaction with Munc13-4, an exocytosis protein essential for CG fusion with the PM. We show that this interaction is critical for docking of Munc13-4+ CGs to the PM and subsequent membrane fusion and release of CG content. Thus, our study illuminates RhoG as a novel essential regulator of human lymphocyte cytotoxicity and provides the molecular pathomechanism behind the identified here and previously unreported genetically determined form of HLH.


Subject(s)
Killer Cells, Natural/pathology , Lymphohistiocytosis, Hemophagocytic/genetics , T-Lymphocytes, Cytotoxic/pathology , rho GTP-Binding Proteins/genetics , Cell Line , Cells, Cultured , Gene Deletion , Germ-Line Mutation , Humans , Infant , Killer Cells, Natural/metabolism , Lymphohistiocytosis, Hemophagocytic/pathology , Male , Models, Molecular , T-Lymphocytes, Cytotoxic/metabolism , rho GTP-Binding Proteins/chemistry
2.
Immunol Rev ; 287(1): 162-185, 2019 01.
Article in English | MEDLINE | ID: mdl-30565237

ABSTRACT

Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.


Subject(s)
Homeostasis , Immunity/genetics , Inflammatory Bowel Diseases/immunology , Animals , Gene-Environment Interaction , Humans , Inflammation/genetics , Inflammatory Bowel Diseases/genetics , Phenotype
3.
Z Gastroenterol ; 60(11): 1668-1677, 2022 Nov.
Article in German | MEDLINE | ID: mdl-35297030

ABSTRACT

In the work-up of chronic enteropathies an underlying inborn error of immunity (IEI) should be considered in certain cases. IEI are rare, but approximately 10% of patients may present with symptoms of inflammatory bowel disease (IBD), which is a much more common entity. Patients with IEI associated IBD may show extraintestinal symptoms or signs, and are often refractory to conventional anti-inflammatory treatment. In case of early-onset bowel inflammation and other intestinal or extraintestinal manifestations, an IEI should be excluded. A small fraction of monogenic IEI can be amenable to targeted therapies, or even corrected by allogeneic stem cell transplantation. Therefore, early diagnosis is crucial. This paper shows examples of clinical - gastrointestinal as well as extraintestinal - signs and findings which require immunological and possibly genetic workup.


Subject(s)
Inflammatory Bowel Diseases , Humans , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/therapy , Inflammation
4.
Blood ; 134(18): 1510-1516, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31501153

ABSTRACT

Dysregulated immune responses are essential underlying causes of a plethora of pathologies including cancer, autoimmunity, and immunodeficiency. We here investigated 4 patients from unrelated families presenting with immunodeficiency, autoimmunity, and malignancy. We identified 4 distinct homozygous mutations in TNFRSF9 encoding the tumor necrosis factor receptor superfamily member CD137/4-1BB, leading to reduced, or loss of, protein expression. Lymphocytic responses crucial for immune surveillance, including activation, proliferation, and differentiation, were impaired. Genetic reconstitution of CD137 reversed these defects. CD137 deficiency is a novel inborn error of human immunity characterized by lymphocytic defects with early-onset Epstein-Barr virus (EBV)-associated lymphoma. Our findings elucidate a functional role and relevance of CD137 in human immune homeostasis and antitumor responses.


Subject(s)
Autoimmune Diseases/genetics , Immunologic Deficiency Syndromes/genetics , Lymphoma/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Autoimmune Diseases/immunology , Female , Genetic Predisposition to Disease , Humans , Immunologic Deficiency Syndromes/immunology , Lymphoma/immunology , Male , Pedigree , Tumor Necrosis Factor Receptor Superfamily, Member 9/deficiency
5.
J Allergy Clin Immunol ; 142(5): 1589-1604.e11, 2018 11.
Article in English | MEDLINE | ID: mdl-29751004

ABSTRACT

BACKGROUND: The actin-interacting protein WD repeat-containing protein 1 (WDR1) promotes cofilin-dependent actin filament turnover. Biallelic WDR1 mutations have been identified recently in an immunodeficiency/autoinflammatory syndrome with aberrant morphology and function of myeloid cells. OBJECTIVE: Given the pleiotropic expression of WDR1, here we investigated to what extent it might control the lymphoid arm of the immune system in human subjects. METHODS: Histologic and detailed immunologic analyses were performed to elucidate the role of WDR1 in the development and function of B and T lymphocytes. RESULTS: Here we identified novel homozygous and compound heterozygous WDR1 missense mutations in 6 patients belonging to 3 kindreds who presented with respiratory tract infections, skin ulceration, and stomatitis. In addition to defective adhesion and motility of neutrophils and monocytes, WDR1 deficiency was associated with aberrant T-cell activation and B-cell development. T lymphocytes appeared to develop normally in the patients, except for the follicular helper T-cell subset. However, peripheral T cells from the patients accumulated atypical actin structures at the immunologic synapse and displayed reduced calcium flux and mildly impaired proliferation on T-cell receptor stimulation. WDR1 deficiency was associated with even more severe abnormalities of the B-cell compartment, including peripheral B-cell lymphopenia, paucity of B-cell progenitors in the bone marrow, lack of switched memory B cells, reduced clonal diversity, abnormal B-cell spreading, and increased apoptosis on B-cell receptor/Toll-like receptor stimulation. CONCLUSION: Our study identifies a novel role for WDR1 in adaptive immunity, highlighting WDR1 as a central regulator of actin turnover during formation of the B-cell and T-cell immunologic synapses.


Subject(s)
B-Lymphocytes/immunology , Immunological Synapses , Microfilament Proteins/genetics , Microfilament Proteins/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Adult , Child , Female , Humans , Male , Mutation , Young Adult
6.
Nat Chem Biol ; 10(11): 950-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282505

ABSTRACT

Severe forms of pneumococcal meningitis, bacteraemia and pneumonia result in more than 1 million deaths each year despite the widespread introduction of carbohydrate-protein conjugate vaccines against Streptococcus pneumoniae. Here we describe a new and highly efficient antipneumococcal vaccine design based on synthetic conjugation of S. pneumoniae capsule polysaccharides to the potent lipid antigen α-galactosylceramide, which stimulates invariant natural killer T (iNKT) cells when presented by the nonpolymorphic antigen-presenting molecule CD1d. Mice injected with the new lipid-carbohydrate conjugate vaccine produced high-affinity IgG antibodies specific for pneumococcal polysaccharides. Vaccination stimulated germinal center formation; accumulation of iNKT cells with a T follicular helper cell phenotype; and increased frequency of carbohydrate-specific, long-lived memory B cells and plasmablasts. This new lipid-carbohydrate vaccination strategy induced potent antipolysaccharide immunity that protected against pneumococcal disease in mice and may also prove effective for the design of carbohydrate-based vaccines against other major bacterial pathogens.


Subject(s)
Carbohydrates/chemistry , Lipids/chemistry , Pneumococcal Vaccines/chemical synthesis , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology , Animals , Antibodies, Monoclonal/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Carbohydrates/administration & dosage , Cell Line , Germinal Center/cytology , Germinal Center/immunology , HL-60 Cells , Humans , Immunization, Passive , Immunologic Memory/immunology , Kinetics , Lipids/administration & dosage , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Natural Killer T-Cells/immunology , Pneumococcal Vaccines/administration & dosage , Pneumococcal Vaccines/chemistry , Time Factors , Vaccines, Synthetic/administration & dosage
7.
Cell Rep ; 36(1): 109318, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34233185

ABSTRACT

The immunological synapse is a complex structure that decodes stimulatory signals into adapted lymphocyte responses. It is a unique window to monitor lymphocyte activity because of development of systematic quantitative approaches. Here we demonstrate the applicability of high-content imaging to human T and natural killer (NK) cells and develop a pipeline for unbiased analysis of high-definition morphological profiles. Our approach reveals how distinct facets of actin cytoskeleton remodeling shape immunological synapse architecture and affect lytic granule positioning. Morphological profiling of CD8+ T cells from immunodeficient individuals allows discrimination of the roles of the ARP2/3 subunit ARPC1B and the ARP2/3 activator Wiskott-Aldrich syndrome protein (WASP) in immunological synapse assembly. Single-cell analysis further identifies uncoupling of lytic granules and F-actin radial distribution in ARPC1B-deficient lymphocytes. Our study provides a foundation for development of morphological profiling as a scalable approach to monitor primary lymphocyte responsiveness and to identify complex aspects of lymphocyte micro-architecture.


Subject(s)
Cell Shape , Imaging, Three-Dimensional , Killer Cells, Natural/cytology , T-Lymphocytes/cytology , Actin-Related Protein 2-3 Complex/deficiency , Actin-Related Protein 2-3 Complex/metabolism , Adolescent , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Cell Line , Cell Shape/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Exocytosis/drug effects , Humans , Immunological Synapses/drug effects , Immunological Synapses/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Male , Organoselenium Compounds/pharmacology , Organosilicon Compounds/pharmacology , Single-Cell Analysis , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Thiones/pharmacology , Uracil/analogs & derivatives , Uracil/pharmacology , Wiskott-Aldrich Syndrome Protein/deficiency , Wiskott-Aldrich Syndrome Protein/metabolism
9.
Nat Commun ; 10(1): 3106, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31308374

ABSTRACT

Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.


Subject(s)
CTLA-4 Antigen/metabolism , DNA-Binding Proteins/deficiency , Guanine Nucleotide Exchange Factors/deficiency , Primary Immunodeficiency Diseases/genetics , B7-1 Antigen/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Knockout Techniques , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Homeostasis , Humans , Jurkat Cells , T-Lymphocytes/metabolism , T-Lymphocytes/physiology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
10.
Mucosal Immunol ; 11(4): 1060-1070, 2018 07.
Article in English | MEDLINE | ID: mdl-29743612

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes in mucosal tissues and recognize a variety of riboflavin-related metabolites produced by the microbial flora. Relevant issues are whether MAIT cells are heterogeneous in the colon, and whether the local environment influences microbial metabolism thereby shaping MAIT cell phenotypes and responses. We found discrete MAIT cell populations in human colon, characterized by the diverse expression of transcription factors, cytokines and surface markers, indicative of activated and precisely controlled lymphocyte populations. Similar phenotypes were rare among circulating MAIT cells and appeared when circulating MAIT cells were stimulated with the synthetic antigens 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil, and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil. Furthermore, bacteria grown in colon-resembling conditions with low oxygen tension and harvested at stationary growth phase, potently activated human MAIT cells. The increased activation correlated with accumulation of the above antigenic metabolites as indicated by mass spectrometry. Thus, the colon environment contributes to mucosal immunity by directly affecting bacterial metabolism, and indirectly controlling the stimulation and differentiation of MAIT cells.


Subject(s)
Colon/pathology , Gastrointestinal Microbiome/physiology , Mucosal-Associated Invariant T Cells/immunology , Antigens, Bacterial/immunology , Cell Differentiation , Cells, Cultured , Cellular Microenvironment , Humans , Immunity, Innate , Immunization , Riboflavin/immunology , Uracil/analogs & derivatives , Uracil/immunology
11.
Elife ; 62017 05 18.
Article in English | MEDLINE | ID: mdl-28518056

ABSTRACT

MHC class I-related molecule MR1 presents riboflavin- and folate-related metabolites to mucosal-associated invariant T cells, but it is unknown whether MR1 can present alternative antigens to other T cell lineages. In healthy individuals we identified MR1-restricted T cells (named MR1T cells) displaying diverse TCRs and reacting to MR1-expressing cells in the absence of microbial ligands. Analysis of MR1T cell clones revealed specificity for distinct cell-derived antigens and alternative transcriptional strategies for metabolic programming, cell cycle control and functional polarization following antigen stimulation. Phenotypic and functional characterization of MR1T cell clones showed multiple chemokine receptor expression profiles and secretion of diverse effector molecules, suggesting functional heterogeneity. Accordingly, MR1T cells exhibited distinct T helper-like capacities upon MR1-dependent recognition of target cells expressing physiological levels of surface MR1. These data extend the role of MR1 beyond microbial antigen presentation and indicate MR1T cells are a normal part of the human T cell repertoire.


Subject(s)
Antigen Presentation , Antigens/immunology , Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/metabolism , T-Lymphocytes/immunology , Cell Line , Cytokines/metabolism , Humans , Receptors, Chemokine/biosynthesis
12.
FEBS Lett ; 580(30): 6797-9, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-17150214

ABSTRACT

A comparative study of the 30S ribosomal subunit in the complex with protein S1 and the subunit depleted of this protein has been carried out by the hot tritium bombardment method. Differences in exposure of some ribosomal proteins within the 30S subunit depleted of S1 and within the 30S-S1 complex were found. It was concluded that protein S1 binds in the region of the neck of the 30S ribosomal subunit inducing a conformational change of its structure.


Subject(s)
Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/metabolism , Ribosomal Proteins/genetics , Thermus thermophilus/chemistry , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
13.
Nat Commun ; 5: 3866, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24832684

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here we show that human MAIT cells are remarkably oligoclonal in both the blood and liver, display high inter-individual homology and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Similar to 'conventional' MAIT cells, these lymphocytes react to riboflavin-synthesizing microbes in an MR1-restricted manner and infiltrate solid tissues. Both MAIT cell types release Th0, Th1 and Th2 cytokines, and sCD40L in response to bacterial infection, show cytotoxic capacity against infected cells and promote killing of intracellular bacteria, thus suggesting important protective and immunoregulatory functions of these lymphocytes.


Subject(s)
Gene Rearrangement, beta-Chain T-Cell Antigen Receptor , Genes, T-Cell Receptor alpha/genetics , Genes, T-Cell Receptor beta/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , T-Lymphocyte Subsets/metabolism , Adult , Humans , Sequence Analysis, Protein , T-Lymphocytes/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL