Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Nano Lett ; 19(7): 4684-4691, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31250653

ABSTRACT

Ion conducting block copolymers can overcome traditional limitations of homopolymer electrolytes by phase separating into nanoarchitectures that can be simultaneously optimized for two or more orthogonal material properties such as high ionic conductivity and mechanical stability. A key challenge in understanding the ion transport properties of these materials is the difficulty of extracting structure-function relationships without having complete knowledge of all nanoscale transport pathways in bulk samples. Here we demonstrate a method for deriving structure-transport relationships for ion conducting block copolymers using thin films and interdigitated electrodes. Well-defined and directly imaged structure in films of poly(styrene)-block-poly(2-vinylpyridine) is controlled using techniques of directed self-assembly then the poly(2-vinylpyridine) is selectively converted into an ion conductor. The ion conductivity is found to be directly proportional to the total number of connected paths between electrodes and the path length. A single defect such as a dislocation anywhere in the path of an ion conducting route disconnects and precludes that pathway from contributing to the conductivity and results in an increase in the dielectric parameter of the film. When all the ion conduction pathways are blocked between electrodes, the conductivity is negligible, 4 orders of magnitude lower compared to a completely connected morphology and the dielectric parameter increases by a factor of 50. These results have profound implications for the interpretation, design, and processing of block copolymer electrolytes for applications as ion conducting membranes.

2.
Angew Chem Int Ed Engl ; 53(2): 488-92, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24282090

ABSTRACT

Development of rechargeable lithium metal battery (LMB) remains a challenge because of uneven lithium deposition during repeated cycles of charge and discharge. Ionic liquids have received intensive scientific interest as electrolytes because of their exceptional thermal and electrochemical stabilities. Ionic liquid and ionic-liquid-nanoparticle hybrid electrolytes based on 1-methy-3-propylimidazolium (IM) and 1-methy-3-propylpiperidinium (PP) have been synthesized and their ionic conductivity, electrochemical stability, mechanical properties, and ability to promote stable Li electrodeposition investigated. PP-based electrolytes were found to be more conductive and substantially more efficient in suppressing dendrite formation on cycled lithium anodes; as little as 11 wt % PP-IL in a PC-LiTFSI host produces more than a ten-fold increase in cell lifetime. Both PP- and IM-based nanoparticle hybrid electrolytes provide up to 10 000-fold improvements in cell lifetime than anticipated based on their mechanical modulus alone. Galvanostatic cycling measurements in Li/Li4 Ti5 O12 half cells using IL-nanoparticle hybrid electrolytes reveal more than 500 cycles of trouble-free operation and enhanced rate capability.

3.
Nat Commun ; 14(1): 49, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36599825

ABSTRACT

All-inorganic nanocrystals (NCs) are of great importance in a range of electronic devices. However, current all-inorganic NCs suffer from limitations in their optical properties, such as low fluorescence efficiencies. Here, we develop a general surface treatment strategy to obtain intensely luminescent all-inorganic NCs (ILANs) by using designed metal salts with noncoordinating anions that play a dual role in the surface treatment process: (i) removing the original organic ligands and (ii) binding to unpassivated Lewis basic sites to preserve the photoluminescent (PL) properties of the NCs. The absolute photoluminescence quantum yields (PLQYs) of red-emitting CdSe/ZnS NCs, green-emitting CdSe/CdZnSeS/ZnS NCs and blue-emitting CdZnS/ZnS NCs in polar solvents are 97%, 80% and 72%, respectively. Further study reveals that the passivated Lewis basic sites of ILANs by metal cations boost the efficiency of radiative recombination of electron-hole pairs. While the passivation of Lewis basic sites leads to a high PLQY of ILANs, the exposed Lewis acidic sites provide the possibility for in situ tuning of the functions of NCs, creating opportunities for direct optical patterning of functional NCs with high resolution.

4.
Micromachines (Basel) ; 14(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630168

ABSTRACT

In vivo, articular cartilage tissue is surrounded by a cartilage membrane, and hydrostatic pressure (HP) and compressive strain increase simultaneously with the compressive stress. However, it has been impossible to investigate the effects of simultaneous loading in vitro. In this study, a bioreactor capable of applying compressive stress under HP was developed to reproduce ex vivo the same physical loading environment found in cartilage. First, a HP stimulation unit was constructed to apply a cyclic HP pressure-resistant chamber by controlling a pump and valve. A compression-loading mechanism that can apply compressive stress using an electromagnetic force was implemented in the chamber. The synchronization between the compression and HP units was evaluated, and the stimulation parameters were quantitatively evaluated. Physiological HP and compressive strain were applied to the chondrocytes encapsulated in alginate and gelatin gels after applying high HP at 25 MPa, which induced damage to the chondrocytes. It was found that compressive stimulation increased the expression of genes related to osteoarthritis. Furthermore, the simultaneous application of compressive strain and HP, which is similar to the physiological environment in cartilage, had an inhibitory effect on the expression of genes related to osteoarthritis. HP alone also suppressed the expression of osteoarthritis-related genes. Therefore, the simultaneous hydrostatic and compressive stress-loading device developed to simulate the mechanical environment in vivo may be an important tool for elucidating the mechanisms of disease onset and homeostasis in cartilage.

5.
Sci Adv ; 5(11): eaax9112, 2019 11.
Article in English | MEDLINE | ID: mdl-31819903

ABSTRACT

Engineering the grain boundaries of crystalline materials represents an enduring challenge, particularly in the case of soft materials. Grain boundaries, however, can provide preferential sites for chemical reactions, adsorption processes, nucleation of phase transitions, and mechanical transformations. In this work, "soft heteroepitaxy" is used to exert precise control over the lattice orientation of three-dimensional liquid crystalline soft crystals, thereby granting the ability to sculpt the grain boundaries between them. Since these soft crystals are liquid-like in nature, the heteroepitaxy approach introduced here provides a clear strategy to accurately mold liquid-liquid interfaces in structured liquids with a hitherto unavailable level of precision.

SELECTION OF CITATIONS
SEARCH DETAIL