Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 131(21): 212501, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38072612

ABSTRACT

The cluster structure of the neutron-rich isotope ^{10}Be has been probed via the (p,pα) reaction at 150 MeV/nucleon in inverse kinematics and in quasifree conditions. The populated states of ^{6}He residues were investigated through missing mass spectroscopy. The triple differential cross section for the ground-state transition was extracted for quasifree angle pairs (θ_{p},θ_{α}) and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using successively the Tohsaki-Horiuchi-Schuck-Röpke product wave function and the wave function deduced from antisymmetrized molecular dynamics calculations. The remarkable agreement between calculated and measured cross sections in both shape and magnitude validates the molecular structure description of the ^{10}Be ground-state, configured as an α-α core with two valence neutrons occupying π-type molecular orbitals.

2.
Phys Rev Lett ; 118(5): 052701, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28211732

ABSTRACT

The cross sections of the ^{7}Be(n,α)^{4}He reaction for p-wave neutrons were experimentally determined at E_{c.m.}=0.20-0.81 MeV slightly above the big bang nucleosynthesis (BBN) energy window for the first time on the basis of the detailed balance principle by measuring the time-reverse reaction. The obtained cross sections are much larger than the cross sections for s-wave neutrons inferred from the recent measurement at the n_TOF facility in CERN, but significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the ^{7}Be(n,α)^{4}He reaction rate is not large enough to solve the cosmological lithium problem, and this conclusion agrees with the recent result from the direct measurement of the s-wave cross sections using a low-energy neutron beam and the evaluated nuclear data library ENDF/B-VII.1.

3.
Nat Commun ; 9(1): 1594, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686394

ABSTRACT

The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

4.
SELECTION OF CITATIONS
SEARCH DETAIL