Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Malar J ; 17(1): 143, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29615050

ABSTRACT

BACKGROUND: In the context of malaria elimination/eradication, drugs that are effective against the different developmental stages of the parasite are highly desirable. The oldest synthetic anti-malarial drug, the thiazine dye methylene blue (MB), is known for its activity against Plasmodium blood stages, including gametocytes. The aim of the present study was to investigate a possible effect of MB against malaria parasite liver stages. METHODS: MB activity was investigated using both in vitro and in vivo models. In vitro assays consisted of testing MB activity on Plasmodium falciparum, Plasmodium cynomolgi and Plasmodium yoelii parasites in human, simian or murine primary hepatocytes, respectively. MB in vivo activity was evaluated using intravital imaging in BALB/c mice infected with a transgenic bioluminescent P. yoelii parasite line. The transmission-blocking activity of MB was also addressed using mosquitoes fed on MB-treated mice. RESULTS: MB shows no activity on Plasmodium liver stages, including hypnozoites, in vitro in primary hepatocytes. In BALB/c mice, MB has moderate effect on P. yoelii hepatic development but is highly effective against blood stage growth. MB is active against gametocytes and abrogates parasite transmission from mice to mosquitoes. CONCLUSION: While confirming activity of MB against both sexual and asexual blood stages, the results indicate that MB has only little activity on the development of the hepatic stages of malaria parasites.


Subject(s)
Antimalarials/pharmacology , Methylene Blue/pharmacology , Plasmodium cynomolgi/drug effects , Plasmodium falciparum/drug effects , Plasmodium yoelii/drug effects , Animals , Anopheles/parasitology , Erythrocytes/parasitology , Female , Liver/parasitology , Mice/parasitology , Mice, Inbred BALB C
2.
JACC Basic Transl Sci ; 4(6): 717-732, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31709320

ABSTRACT

Acute kidney injury is associated with increased risk of heart failure and mortality. This study demonstrates that acute kidney injury induces remote cardiac dysfunction, damage, injury, and fibrosis via a galectin-3 (Gal-3) dependent pathway. Gal-3 originates from bone marrow-derived immune cells. Cardiac damage could be prevented by blocking this pathway.

SELECTION OF CITATIONS
SEARCH DETAIL