Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664752

ABSTRACT

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Subject(s)
Dependovirus , Genetic Vectors , Poloxamer , Animals , Humans , HEK293 Cells , Poloxamer/pharmacology , Poloxamer/chemistry , Mice , Dependovirus/genetics , Genetic Vectors/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Temperature , Genes, Reporter
2.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37805711

ABSTRACT

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Subject(s)
Doxycycline , Gene Editing , Mice , Animals , Dependovirus/genetics , Genetic Vectors/genetics , RNA, Guide, CRISPR-Cas Systems , Lung/metabolism , Surface-Active Agents/metabolism , CRISPR-Cas Systems
3.
Gene Ther ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732618

ABSTRACT

Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.

4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36768726

ABSTRACT

Dendritic cell (DC) vaccines are a type of immunotherapy that relies on the communication of DCs with other aspects of the immune system. DCs are potent antigen-presenting cells involved in the activation of innate immune responses and education of adaptive immunity, making them ideal targets for immunotherapies. Innate lymphoid cells (ILCs) are relatively newly identified in the field of immunology and have important roles in health and disease. The studies described here explored the communications between type 3 ILCs (ILC3s) and DCs using a murine model of DC-based vaccination. Local and systemic changes in ILC3 populations following the administration of a DC vaccine were observed, and upon challenge with B16F10 melanoma cells, changes in ILC3 populations in the lungs were observed. The interactions between DCs and ILC3s should be further explored to determine the potential that their communications could have in health, disease, and the development of immunotherapies.


Subject(s)
Lymphocytes , Vaccines , Animals , Mice , Immunity, Innate , Dendritic Cells , Adaptive Immunity
5.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674412

ABSTRACT

Neutrophils have conflicting roles in the context of cancers, where they have been associated with contributing to both anti-tumor and pro-tumor responses. Their functional heterogenicity is plastic and can be manipulated by environmental stimuli, which has fueled an area of research investigating therapeutic strategies targeting neutrophils. Dendritic cell (DC)-based cancer vaccination is an immunotherapy that has exhibited clinical promise but has shown limited clinical efficacy. Enhancing our understanding of the communications occurring during DC cancer vaccination can uncover opportunities for enhancing the DC vaccine platform. There have been observed communications between neutrophils and DCs during natural immune responses. However, their crosstalk has been poorly studied in the context of DC vaccination. Here, we review the dual functionality of neutrophils in the context of cancers, describe the crosstalk between neutrophils and DCs during immune responses, and discuss their implications in DC cancer vaccination. This discussion will focus on how neutrophil extracellular traps can influence immune responses in the tumor microenvironment and what roles they may play in promoting or hindering DC vaccine-induced anti-tumor efficacy.


Subject(s)
Cancer Vaccines , Extracellular Traps , Hematologic Neoplasms , Neoplasms , Sarcoma , Humans , Neutrophils , Neoplasms/pathology , Dendritic Cells , Vaccination , Tumor Microenvironment
6.
Int J Mol Sci ; 24(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37762443

ABSTRACT

Mat cells (MCs) are located in the skin and mucous membranes at points where the body meets the environment. When activated, MCs release inflammatory cytokines, which help the immune system to fight viruses. MCs produce, and have receptors for interferons (IFNs), which belong to a family of cytokines recognized for their antiviral properties. Previously, we reported that MCs produced proinflammatory cytokines in response to a recombinant vesicular stomatitis virus (rVSVΔm51) and that IFNAR signaling was required to down-modulate these responses. Here, we have demonstrated that UV-irradiated rVSVΔm51 did not cause any inflammatory cytokines in either in vitro cultured mouse IFNAR-intact (IFNAR+/+), or in IFNAR-knockout (IFNAR-/-) MCs. However, the non-irradiated virus was able to replicate more effectively in IFNAR-/- MCs and produced a higher level of inflammatory cytokines compared with the IFNAR+/+ MCs. Interestingly, MCs lacking IFNAR expression displayed reduced levels of reactive oxygen species (ROS) compared with IFNAR+/+ MCs. Additionally, upon the viral infection, these IFNAR-/- MCs were found to coexist with many dying cells within the cell population. Based on our findings, IFNAR-intact MCs exhibit a lower rate of rVSVΔm51 infectivity and lower levels of cytokines while demonstrating higher levels of ROS. This suggests that MCs with intact IFNAR signaling may survive viral infections by producing cell-protective ROS mechanisms and are less likely to die than IFNAR-/- cells.


Subject(s)
Cytokines , Virus Diseases , Animals , Mice , Cell Death , Immunologic Factors , Mast Cells , Reactive Oxygen Species , Virus Diseases/genetics
7.
Gene Ther ; 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050451

ABSTRACT

Vectored monoclonal antibody (mAb) expression mediated by adeno-associated virus (AAV) gene delivery leads to sustained therapeutic mAb expression and protection against a wide range of infectious diseases in both small and large animal models, including nonhuman primates. Using our rationally engineered AAV6 triple mutant capsid, termed AAV6.2FF, we demonstrate rapid and robust expression of two potent human antibodies against Marburg virus, MR78 and MR191, following intramuscular (IM) administration. IM injection of mice with 1 × 1011 vector genomes (vg) of AAV6.2FF-MR78 and AAV6.2FF-MR191 resulted in serum concentrations of approximately 141 µg/mL and 195 µg/mL of human IgG, respectively, within the first four weeks. Mice receiving 1 × 1011 vg (high) and 1 × 1010 vg (medium) doses of AAV6.2FF-MR191 were completely protected against lethal Marburg virus challenge. No sex-based differences in serum human IgG concentrations were observed; however, administering the AAV-mAb over multiple injection sites significantly increased serum human IgG concentrations. IM administration of three two-week-old lambs with 5 × 1012 vg/kg of AAV6.2FF-MR191 resulted in serum human IgG expression that was sustained for more than 460 days, concomitant with low levels of anti-capsid and anti-drug antibodies. AAV-mAb expression is a viable method for prolonging the therapeutic effect of recombinant mAbs and represents a potential alternative "vaccine" strategy for those with compromised immune systems or in possible outbreak response scenarios.

8.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946935

ABSTRACT

Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , Neutrophils/immunology , Virus Diseases/immunology , Animals , Antiviral Agents/immunology , Extracellular Traps/immunology , Humans , SARS-CoV-2/immunology , Signal Transduction , Viruses/immunology
9.
Int J Mol Sci ; 21(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261178

ABSTRACT

Mast cells (MCs) are critical for initiating inflammatory responses to pathogens including viruses. Type I interferons (IFNs) that exert their antiviral functions by interacting with the type I IFN receptor (IFNAR) play a central role in host cellular responses to viruses. Given that virus-induced excessive toxic inflammatory responses are associated with aberrant IFNAR signaling and considering MCs are an early source of inflammatory cytokines during viral infections, we sought to determine whether IFNAR signaling plays a role in antiviral cytokine responses of MCs. IFNAR-intact, IFNAR-blocked, and IFNAR-knockout (IFNAR-/-) bone-marrow-derived MCs (BMMCs) were treated in vitro with a recombinant vesicular stomatitis virus (rVSVΔm51) to assess cytokine production by these cells. All groups of MCs produced the cytokines interleukin-6 and tumor necrosis factor-α in response to rVSVΔm51. However, production of the cytokines was lowest in IFNAR-intact cells as compared with IFNAR-/- or IFNAR-blocked cells at 20 h post-stimulation. Surprisingly, rVSVΔm51 was capable of infecting BMMCs, but functional IFNAR signaling was able to protect these cells from virus-induced death. This study showed that BMMCs produced pro-inflammatory cytokines in response to rVSVΔm51 and that IFNAR signaling was required to down-modulate these responses and protect the cells from dying from viral infection.


Subject(s)
Bone Marrow Cells/pathology , Cytokines/biosynthesis , Cytoprotection , Mast Cells/virology , Receptor, Interferon alpha-beta/metabolism , Signal Transduction , Vesiculovirus/physiology , Animals , Cell Death , Down-Regulation , Interleukin-6/metabolism , Kinetics , Mice, Knockout , Time Factors , Tumor Necrosis Factor-alpha/metabolism
10.
Int J Mol Sci ; 21(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882969

ABSTRACT

Neutrophils are innate leukocytes that mount a rapid response to invading pathogens and sites of inflammation. Although neutrophils were traditionally considered responders to bacterial infections, recent advances have demonstrated that they are interconnected with both viral infections and cancers. One promising treatment strategy for cancers is to administer an oncolytic virus to activate the immune system and directly lyse cancerous cells. A detailed characterization of how the innate immune system responds to a viral-based therapy is paramount in identifying its systemic effects. This study analyzed how administering the rhabdovirus vesicular stomatitis virus (VSV) intravenously at 1 × 109 PFU acutely influenced neutrophil populations. Bone marrow, blood, lungs, and spleen were acquired three- and 24-h after administration of VSV for analysis of neutrophils by flow cytometry. Infection with VSV caused neutrophils to rapidly egress from the bone marrow and accumulate in the lungs. A dramatic increase in immature neutrophils was observed in the lungs, as was an increase in the antigen presentation potential of these cells within the spleen. Furthermore, the potential for neutrophils to acquire viral transgene-encoded proteins was monitored using a variant of VSV that expressed enhanced green fluorescent protein (GFP). If an in vitro population of splenocytes were exposed to αCD3 and αCD28, a substantial proportion of the neutrophils would become GFP-positive. This suggested that the neutrophils could either acquire more virus-encoded antigens from infected splenocytes or were being directly infected. Five different dosing regimens were tested in mice, and it was determined that a single dose of VSV or two doses of VSV administered at a 24-h interval, resulted in a substantial proportion of neutrophils in the bone marrow becoming GFP-positive. This correlated with a decrease in the number of splenic neutrophils. Two doses administered at intervals longer than 24-h did not have these effects, suggesting that neutrophils became resistant to antigen uptake or direct infection with VSV beyond 24-h of activation. These findings implicated neutrophils as major contributors to oncolytic rhabdoviral therapies. They also provide several clear future directions for research and suggest that neutrophils should be carefully monitored during the development of all oncolytic virus-based treatment regimens.


Subject(s)
Antigen Presentation/immunology , Neutrophils/immunology , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Vesicular Stomatitis/immunology , Vesicular stomatitis Indiana virus/immunology , Viral Nonstructural Proteins/metabolism , Animals , Female , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Vesicular Stomatitis/therapy , Vesicular Stomatitis/virology , Viral Nonstructural Proteins/immunology
11.
J Immunol ; 198(1): 128-137, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27872212

ABSTRACT

Type 2 innate lymphoid cells (ILC2) mediate inflammatory immune responses in the context of diseases triggered by the alarmin IL-33. In recent years, IL-33 has been implicated in the pathogenesis of immune-mediated liver diseases. However, the immunoregulatory function of ILC2s in the inflamed liver remains elusive. Using the murine model of Con A-induced immune-mediated hepatitis, we showed that selective expansion of ILC2s in the liver was associated with highly elevated hepatic IL-33 expression, severe liver inflammation, and infiltration of eosinophils. CD4+ T cell-mediated tissue damage and subsequent IL-33 release were responsible for the activation of hepatic ILC2s that produced the type 2 cytokines IL-5 and IL-13 during liver inflammation. Interestingly, ILC2 depletion correlated with less severe hepatitis and reduced accumulation of eosinophils in the liver, whereas adoptive transfer of hepatic ILC2s aggravated liver inflammation and tissue damage. We further showed that, despite expansion of hepatic ILC2s, 3-d IL-33 treatment before Con A challenge potently suppressed development of immune-mediated hepatitis. We found that IL-33 not only activated hepatic ILC2s but also expanded CD4+ Foxp3+ regulatory T cells (Treg) expressing the IL-33 receptor ST2 in the liver. This Treg subset also accumulated in the liver during resolution of immune-mediated hepatitis. In summary, hepatic ILC2s are poised to respond to the release of IL-33 upon liver tissue damage through expression of type 2 cytokines thereby participating in the pathogenesis of immune-mediated hepatitis. Inflammatory activity of ILC2s might be regulated by IL-33-elicited ST2+ Tregs that also arise in immune-mediated hepatitis.


Subject(s)
Hepatitis, Autoimmune/immunology , Lymphocyte Activation/immunology , Lymphocytes/immunology , Adoptive Transfer , Animals , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Flow Cytometry , Humans , Immunohistochemistry , Interleukin-33/biosynthesis , Interleukin-33/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , T-Lymphocytes, Regulatory/immunology
12.
Am J Pathol ; 185(10): 2805-18, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254283

ABSTRACT

Acetaminophen (APAP; ie, Paracetamol or Tylenol) is generally self-medicated to treat fever or pain and recommended to pregnant women by their physicians. Recent epidemiological studies reveal an association between prenatal APAP use and an increased risk for asthma. Our aim was to identify the effects of APAP in pregnancy using a mouse model. Allogeneically mated C57Bl/6J females were injected i.p. with 50 or 250 mg/kg APAP or phosphate-buffered saline on gestation day 12.5; nonpregnant females served as controls. Tissue samples were obtained 1 or 4 days after injection. APAP-induced liver toxicity was mirrored by significantly increased plasma alanine aminotransferase levels. In uterus-draining lymph nodes of pregnant dams, the frequencies of mature dendritic cells and regulatory T cells significantly increased on 250 mg/kg APAP. Plasma progesterone levels significantly decreased in dams injected with APAP, accompanied by a morphologically altered placenta. Although overall litter sizes and number of fetal loss remained unaltered, a reduced fetal weight and a lower frequency of hematopoietic stem cells in the fetal liver were observed on APAP treatment. Our data provide strong evidence that prenatal APAP interferes with maternal immune and endocrine adaptation to pregnancy, affects placental function, and impairs fetal maturation and immune development. The latter may have long-lasting consequences on children's immunity and account for the increased risk for asthma observed in humans.


Subject(s)
Acetaminophen/pharmacology , Adaptation, Physiological , Fetus/drug effects , Placenta/metabolism , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Disease Models, Animal , Female , Fetus/embryology , Fetus/metabolism , Mice, Inbred C57BL , Placenta/drug effects , Placenta/immunology , Pregnancy
13.
FASEB J ; 29(2): 684-95, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25392266

ABSTRACT

Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems.


Subject(s)
Enteric Nervous System/physiology , Gastrointestinal Tract/innervation , Immune System/physiology , Lacticaseibacillus rhamnosus/immunology , Animals , Bone Marrow Cells/cytology , CD4-Positive T-Lymphocytes/cytology , Chaperonin 60/metabolism , Coculture Techniques , Dendritic Cells/cytology , Dendritic Cells/microbiology , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Lectins, C-Type/metabolism , Lymph Nodes/pathology , Male , Mice , Mice, Inbred BALB C , Neurons/metabolism , Peristalsis , Peyer's Patches/microbiology , Phenotype , Probiotics , Proteomics , Signal Transduction
14.
J Hepatol ; 62(5): 1085-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25529619

ABSTRACT

BACKGROUND & AIMS: During pregnancy, acetaminophen is one of the very few medications recommended by physicians to treat fever or pain. Recent insights from epidemiological studies suggest an association between prenatal acetaminophen medication and an increased risk for development of asthma in children later in life. The underlying pathogenesis of such association is still unknown. METHODS: We aimed to develop a mouse model to provide insights into the effect of prenatal acetaminophen on maternal, fetal and adult offspring's health. The toxic effect of acetaminophen was studied in mice on 1) maternal liver; mirrored by biomarkers of liver injury, centrilobular necrosis, and infiltration of granulocytes; 2) fetal liver; reflected by the frequency of hematopoietic stem cells, and 3) postnatal health; evaluated by the severity of allergic airway inflammation among offspring. RESULTS: We observed an increased susceptibility towards acetaminophen-induced liver damage in pregnant mice compared to virgins. Moreover, hematopoietic stem cell frequency in fetal liver declined in response to acetaminophen. Furthermore, a greater severity of airway inflammation was observed in offspring of dams upon prenatal acetaminophen treatment, identified lung infiltration by leukocytes and eosinophil infiltration into the airways. CONCLUSION: Our newly developed mouse model on prenatal use of acetaminophen reflects findings from epidemiological studies in humans. The availability of this model will allow improvement in our understanding of how acetaminophen-related hepatotoxicity is operational in pregnant individuals and how an increased risk for allergic diseases in response to prenatal acetaminophen is mediated. Such insights, once available, may change the recommendations for prenatal acetaminophen use.


Subject(s)
Acetaminophen , Asthma , Chemical and Drug Induced Liver Injury , Fetal Stem Cells , Prenatal Exposure Delayed Effects , Acetaminophen/administration & dosage , Acetaminophen/adverse effects , Adult , Adult Children , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/adverse effects , Animals , Asthma/etiology , Asthma/physiopathology , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Chemical and Drug Induced Liver Injury/prevention & control , Disease Models, Animal , Female , Fetal Stem Cells/drug effects , Fetal Stem Cells/pathology , Humans , Inflammation/etiology , Inflammation/physiopathology , Liver/drug effects , Liver/pathology , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/prevention & control , Severity of Illness Index
15.
J Immunol ; 191(11): 5574-82, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24140644

ABSTRACT

The "liver tolerance effect" has been attributed to a unique potential of liver-resident nonprofessional APCs including hepatocytes (HCs) to suppress T cell responses. The exact molecular mechanism of T cell suppression by liver APCs is still largely unknown. In mice, IL-10-dependent T cell suppression is observed after Th1-mediated hepatitis induced by Con A. In this study, we show that HCs, particularly those from regenerating livers of Con A-pretreated mice, induced a regulatory phenotype in naive CD4(+) T cells in vitro. Using reporter mice, we observed that these T regulatory cells released substantial amounts of IL-10, produced IFN-γ, failed to express Foxp3, but suppressed proliferation of responder T cells upon restimulation with anti-CD3 mAb. Hence, these regulatory cells feature a similar phenotype as the recently described IL-10-producing Th1 cells, which are generated upon activation of Notch signaling. Indeed, inhibition of γ-secretase and a disintegrin and metalloproteinase 17 but not a disintegrin and metalloproteinase 10, respectively, which blocked Notch activation, prevented IL-10 secretion. HCs from Con A-pretreated mice showed enhanced expression of the Notch ligand Jagged1 and significantly increased receptor density of Notch1 on CD4(+) T cells. However, HCs from Con A-pretreated IFN regulatory factor 1(-/-) mice, which cannot respond to IFN-γ, as well as those from IFN-γ(-/-) mice failed to augment IL-10 production by CD4(+) T cells. In conclusion, it seems that HCs fine-tune liver inflammation by upregulation of Jagged1 and activation of Notch signaling in Th1 cells. This mechanism might be of particular importance in the regenerating liver subsequent to Th1-mediated hepatitis.


Subject(s)
Hepatitis/immunology , Hepatocytes/immunology , Receptors, Notch/metabolism , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cells, Cultured , Disintegrins/pharmacology , Gene Expression Regulation/immunology , Hepatocytes/pathology , Immune Tolerance , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-10/metabolism , Jagged-1 Protein , Liver/pathology , Lymphocyte Activation/drug effects , Male , Matrix Metalloproteinase 17/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Serrate-Jagged Proteins , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , Th1 Cells/drug effects
16.
Cells ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474426

ABSTRACT

The skin is a dynamic organ with a complex immune network critical for maintaining balance and defending against various pathogens. Different types of cells in the skin, such as mast cells (MCs) and group 2 innate lymphoid cells (ILC2s), contribute to immune regulation and play essential roles in the early immune response to various triggers, including allergens. It is beneficial to dissect cell-to-cell interactions in the skin to elucidate the mechanisms underlying skin immunity. The current manuscript concentrates explicitly on the communication pathways between MCs and ILC2s in the skin, highlighting their ability to regulate immune responses, inflammation, and tissue repair. Furthermore, it discusses how the interactions between MCs and ILC2s play a crucial role in various skin conditions, such as autoimmune diseases, dermatological disorders, and allergic reactions. Understanding the complex interactions between MCs and ILC2s in different skin conditions is crucial to developing targeted treatments for related disorders. The discovery of shared pathways could pave the way for novel therapeutic interventions to restore immunological balance in diseased skin tissues.


Subject(s)
Hypersensitivity , Immunity, Innate , Humans , Lymphocytes , Mast Cells , Skin
17.
Vet Immunol Immunopathol ; 268: 110715, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38219434

ABSTRACT

Avian influenza viruses (AIV), including the H9N2 subtype, pose a major threat to the poultry industry as well as to human health. Although vaccination provides a protective control measure, its effect on transmission remains uncertain in chickens. The objective of the present study was to investigate the efficacy of beta-propiolactone (BPL) whole inactivated H9N2 virus (WIV) vaccine either alone or in combination with CpG ODN 2007 (CpG), poly(I:C) or AddaVax™ (ADD) to prevent H9N2 AIV transmission in chickens. The seeder chickens (trial 1) and recipient chickens (trial 2) were vaccinated twice with different vaccine formulations. Ten days after secondary vaccination, seeder chickens were infected with H9N2 AIV (trial 1) and co-housed with healthy recipient chickens. In trial 2, the recipient chickens were vaccinated and then exposed to H9N2 AIV-infected seeder chickens. Our results demonstrated that BPL+ CpG and BPL+ poly(I:C) treated chickens exhibited reduced oral and cloacal shedding in both trials post-exposure (PE). The number of H9N2 AIV+ recipient chickens in the BPL+ CpG group (trial 1) was lower than in other vaccinated groups, and the reduction was higher in BPL+ CpG recipient chickens in trial 2. BPL+ CpG vaccinated chickens demonstrated enhanced systemic antibody responses with high IgM and IgY titers with higher rates of seroprotection by day 21 post-primary vaccination (ppv). Additionally, the induction of IFN-γ expression and production was higher in the BPL+ CpG treated chickens. Interleukin (IL)- 2 expression was upregulated in both BPL+ CpG and BPL+ poly(I:C) groups at 12 and 24 hr post-stimulation.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza Vaccines , Influenza in Birds , Influenza, Human , Humans , Animals , Chickens , Vaccines, Inactivated , Antibodies, Viral , Adjuvants, Immunologic/pharmacology , Poly I-C/pharmacology , Toll-Like Receptors
18.
Vaccines (Basel) ; 11(10)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37896962

ABSTRACT

Dendritic cell (DC) vaccines can stimulate the immune system to target cancer antigens, making them a promising therapy in immunotherapy. Clinical trials have shown limited effectiveness of DC vaccines, highlighting the need to enhance the immune responses they generate. Innate lymphoid cells (ILCs) are a diverse group of innate leukocytes that produce various cytokines and regulate the immune system. These cells have the potential to improve immunotherapies. There is not much research on how group 2 ILCs (ILC2s) communicate with DC vaccines. Therefore, examining the roles of DC vaccination in immune responses is crucial. Our research analyzed the effects of DC vaccination on the ILC2 populations and their cytokine production. By exploring the relationship between ILC2s and DCs, we aimed to understand how this could affect DC-based immunotherapies. The results showed an increase in the number of ILC2s in the local draining lymph node and spleen of tumor-free mice, as well as in the lungs of mice challenged with tumors in a pulmonary metastasis model. This suggests a complex interplay between DC-based vaccines and ILC2s, which is further influenced by the presence of tumors.

19.
Viruses ; 15(4)2023 04 16.
Article in English | MEDLINE | ID: mdl-37112957

ABSTRACT

Transmission of H9N2 avian influenza virus (AIV) can occur in poultry by direct or indirect contact with infected individuals, aerosols, large droplets and fomites. The current study investigated the potential of H9N2 AIV transmission in chickens via a fecal route. Transmission was monitored by exposing naïve chickens to fecal material from H9N2 AIV-infected chickens (model A) and experimentally spiked feces (model B). The control chickens received H9N2 AIV. Results revealed that H9N2 AIV could persist in feces for up to 60-84 h post-exposure (PE). The H9N2 AIV titers in feces were higher at a basic to neutral pH. A higher virus shedding was observed in the exposed chickens of model B compared to model A. We further addressed the efficacy of Toll-like receptor (TLR) ligands to limit transmission in the fecal model. Administration of CpG ODN 2007 or poly(I:C) alone or in combination led to an overall decrease in the virus shedding, with enhanced expression of type I and II interferons (IFNs) and interferon-stimulating genes (ISGs) in different segments of the small intestine. Overall, the study highlighted that the H9N2 AIV can survive in feces and transmit to healthy naïve chickens. Moreover, TLR ligands could be applied to transmission studies to enhance antiviral immunity and reduce H9N2 AIV shedding.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens , Ligands , Toll-Like Receptors , Feces , Poultry Diseases/prevention & control
20.
Viruses ; 15(1)2023 01 14.
Article in English | MEDLINE | ID: mdl-36680279

ABSTRACT

Low-pathogenicity avian influenza viruses (AIV) of the H9N2 subtype can infect and cause disease in chickens. Little is known about the efficacy of immune-based strategies for reducing the transmission of these viruses. The present study investigated the efficacy of Toll-like receptor (TLR) ligands (CpG ODN 2007 and poly(I:C)) to reduce H9N2 AIV transmission from TLR-treated seeder (trial 1) or inoculated chickens (trial 2) to naive chickens. The results from trial 1 revealed that a low dose of CpG ODN 2007 led to the highest reduction in oral shedding, and a high dose of poly(I:C) was effective at reducing oral and cloacal shedding. Regarding transmission, the recipient chickens exposed to CpG ODN 2007 low-dose-treated seeder chickens showed a maximum reduction in shedding with the lowest number of AIV+ chickens. The results from trial 2 revealed a maximum reduction in oral and cloacal shedding in the poly(I:C) high-dose-treated chickens (recipients), followed by the low-dose CpG ODN 2007 group. In these two groups, the expression of type I interferons (IFNs), protein kinase R (PKR), interferon-induced transmembrane protein 3 (IFITM3), viperin, and (interleukin) IL-1ß, IL-8, and 1L-18 was upregulated in the spleen, cecal tonsils and lungs. Hence, TLR ligands can reduce AIV transmission in chickens.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Adjuvants, Immunologic , Chickens , Influenza in Birds/prevention & control , Ligands , Antibodies, Viral , Toll-Like Receptors/metabolism , Poly I-C/pharmacology , Poultry Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL