Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612788

ABSTRACT

Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.


Subject(s)
Glioblastoma , Saccharomyces cerevisiae , Humans , Proteasome Endopeptidase Complex , Glioblastoma/drug therapy , Bortezomib/pharmacology , HEK293 Cells
2.
Biochemistry (Mosc) ; 88(12): 2043-2053, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38462448

ABSTRACT

Selective degradation of cellular proteins by the ubiquitin-proteasome system (UPS) is one of the key regulatory mechanisms in eukaryotic cells. A growing body of evidence indicates that UPS is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging, and programmed cell death, via proteolytic degradation of key transcription factors and cell signaling proteins and post-translational modification of target proteins with ubiquitin. Studying molecular mechanisms of proteostasis in stem cells is of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer, and other socially significant pathologies. This review discusses current data on the UPS functions in stem cells.


Subject(s)
Proteasome Endopeptidase Complex , Ubiquitin , Animals , Ubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Stem Cells/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Biology , Mammals/metabolism
3.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499174

ABSTRACT

Almost all people become infected with herpes viruses, including herpes simplex virus type 1 (HSV-1), during their lifetime. Typically, these viruses persist in a latent form that is resistant to all available antiviral medications. Under certain conditions, such as immunosuppression, the latent forms reactivate and cause disease. Moreover, strains of herpesviruses that are drug-resistant have rapidly emerged. Therefore, it is important to develop alternative methods capable of eradicating herpesvirus infections. One promising direction is the development of CRISPR/Cas systems for the therapy of herpesvirus infections. We aimed to design a CRISPR/Cas system for relatively effective long-term and safe control of HSV-1 infection. Here, we show that plasmids encoding the CRISPR/Cas9 system from Streptococcus pyogenes with a single sgRNA targeting the UL30 gene can completely suppress HSV-1 infection of the Vero cell line within 6 days and provide substantial protection within 9 days. For the first time, we show that CRISPR/CasX from Deltaproteobacteria with a single guide RNA against UL30 almost completely suppresses HSV-1 infection of the Vero cell line for 3 days and provides substantial protection for 6 days. We also found that the Cas9 protein without sgRNAs attenuates HSV-1 infection. Our results show that the developed CRISPR/Cas systems are promising therapeutic approaches to control HSV-1 infections.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesviridae , Herpesvirus 1, Human , Humans , CRISPR-Cas Systems/genetics , Herpesvirus 1, Human/genetics , Herpes Simplex/genetics , Herpesviridae Infections/genetics , CRISPR-Associated Protein 9/genetics
4.
Appl Microbiol Biotechnol ; 104(9): 4027-4041, 2020 May.
Article in English | MEDLINE | ID: mdl-32157425

ABSTRACT

Distilled spirits production using Saccharomyces cerevisiae requires understanding of the mechanisms of yeast cell response to alcohol stress. Reportedly, specific mutations in genes of the ubiquitin-proteasome system, e.g., RPN4, may result in strains exhibiting hyper-resistance to different alcohols. To study the Rpn4-dependent yeast response to short-term ethanol exposure, we performed a comparative analysis of the wild-type (WT) strain, strain with RPN4 gene deletion (rpn4-Δ), and a mutant strain with decreased proteasome activity and consequent Rpn4 accumulation due to PRE1 deregulation (YPL). The stress resistance tests demonstrated an increased sensitivity of mutant strains to ethanol compared with WT. Comparative proteomics analysis revealed significant differences in molecular responses to ethanol between these strains. GO analysis of proteins upregulated in WT showed enrichments represented by oxidative and heat responses, protein folding/unfolding, and protein degradation. Enrichment of at least one of these responses was not observed in the mutant strains. Moreover, activity of autophagy was not increased in the RPN4 deletion strain upon ethanol stress which agrees with changes in mRNA levels of ATG7 and PRB1 genes of the autophagy system. Activity of the autophagic system was clearly induced and accompanied with PRB1 overexpression in the YPL strain upon ethanol stress. We demonstrated that Rpn4 stabilization contributes to the PRB1 upregulation. CRISPR-Cas9-mediated repression of PACE-core Rpn4 binding sites in the PRB1 promoter inhibits PRB1 induction in the YPL strain upon ethanol treatment and results in YPL hypersensitivity to ethanol. Our data suggest that Rpn4 affects the autophagic system activity upon ethanol stress through the PRB1 regulation. These findings can be a basis for creating genetically modified yeast strains resistant to high levels of alcohol, being further used for fermentation in ethanol production.


Subject(s)
Autophagy/genetics , DNA-Binding Proteins/genetics , Ethanol/pharmacology , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/drug effects , Transcription Factors/genetics , Autophagy/drug effects , Endopeptidases/genetics , Fermentation , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcriptional Activation
5.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143019

ABSTRACT

Environmental and intracellular factors often damage DNA, but multiple DNA repair pathways maintain genome integrity. In yeast, the 26S proteasome and its transcriptional regulator and substrate Rpn4 are involved in DNA damage resistance. Paradoxically, while proteasome dysfunction may induce hyper-resistance to DNA-damaging agents, Rpn4 malfunction sensitizes yeasts to these agents. Previously, we proposed that proteasome inhibition causes Rpn4 stabilization followed by the upregulation of Rpn4-dependent DNA repair genes and pathways. Here, we aimed to elucidate the key Rpn4 targets responsible for DNA damage hyper-resistance in proteasome mutants. We impaired the Rpn4-mediated regulation of candidate genes using the CRISPR/Cas9 system and tested the sensitivity of mutant strains to 4-NQO, MMS and zeocin. We found that the separate or simultaneous deregulation of 19S or 20S proteasome subcomplexes induced MAG1, DDI1, RAD23 and RAD52 in an Rpn4-dependent manner. Deregulation of RAD23, DDI1 and RAD52 sensitized yeast to DNA damage. Genetic, epigenetic or dihydrocoumarin-mediated RAD52 repression restored the sensitivity of the proteasome mutants to DNA damage. Our results suggest that the Rpn4-mediated overexpression of DNA repair genes, especially RAD52, defines the DNA damage hyper-resistant phenotype of proteasome mutants. The developed yeast model is useful for characterizing drugs that reverse the DNA damage hyper-resistance phenotypes of cancers.


Subject(s)
DNA Repair , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Proteasome Endopeptidase Complex/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , CRISPR-Cas Systems , DNA Damage , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Mutation , Rad52 DNA Repair and Recombination Protein/antagonists & inhibitors , Rad52 DNA Repair and Recombination Protein/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics
6.
FEMS Yeast Res ; 19(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30629175

ABSTRACT

The 26S proteasome participates in cell stress responses via its ability to degrade regulatory and damaged proteins. In yeast, mutations in the subunits of the 19S proteasome regulatory subcomplex cause hyper-resistance to 4-nitroquinoline-1-oxide (4-NQO), a chemical mutagen and carcinogen. These data suggest a negative role for the 19S proteasome complex in the cellular response to 4-NQO, although the underlying mechanism is not clear. We proposed that decreased 19S subcomplex activity leads to the stabilisation of Rpn4p, a transcription factor and proteasome substrate. In turn, stabilised Rpn4p may upregulate stress-responsive genes that participate in the response to 4-NQO-induced stress. To test our hypothesis, we impaired the expression of the RPT5 gene, which encodes the ATPase subunit of the 19S subcomplex, by mutating the Rpn4p binding site in its promoter. The mutant strain accumulates polyubiquitinated proteins-a hallmark of compromised proteasome function-and shows hyper-resistance to 4-NQO. We found several groups of genes that conferred resistance to 4-NQO-induced stress and were overexpressed due to the Rpn4p stabilisation and impaired 19S subcomplex function. The upregulated genes are involved in the oxidative and proteotoxic stress response pathways, multidrug resistance and biosynthesis of cysteine and methionine. Consistently, the mutant strain was hyper-resistant to oxidative stress. Our data imply that the ubiquitin-proteasome system may regulate the cellular response to 4-NQO at the transcriptional level.


Subject(s)
DNA-Binding Proteins/biosynthesis , Oxidative Stress , Proteasome Endopeptidase Complex/metabolism , Quinolones/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Transcription Factors/biosynthesis , Up-Regulation , 4-Nitroquinoline-1-oxide/metabolism , Oxidants/metabolism , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae/drug effects , Stress, Physiological
7.
J Gen Virol ; 98(1): 50-55, 2017 01.
Article in English | MEDLINE | ID: mdl-28221100

ABSTRACT

Currently, many DNA vaccines against infectious diseases are in clinical trials; however, their efficacy needs to be improved. The potency of DNA immunogen can be optimized by targeting technologies. In the current study, to increase the efficacy of NS1 encoded by plasmid, proteasome targeting was applied. NS1 variants with or without translocation sequence and with ornithine decarboxylase as a signal of proteasomal degradation were tested for expression, localization, protein turnover, proteasomal degradation and protection properties. Deletion of translocation signal abrogated presentation of NS1 on the cell surface and increased proteasomal processing of NS1. Fusion with ornithine decarboxylase led to an increase of protein turnover and the proteasome degradation rate of NS1. Immunization with NS1 variants with increased proteasome processing protected mice from viral challenge only partially; however, the survival time of infected mice was prolonged in these groups. These data can give a presupposition for formulation of specific immune therapy for infected individuals.


Subject(s)
Encephalitis Viruses, Tick-Borne/immunology , Proteolysis , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism , Viral Vaccines/immunology , Animals , Mice , Survival Analysis , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
8.
FEMS Yeast Res ; 17(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27856503

ABSTRACT

The transcription factor ScRpn4 coordinates the expression of Saccharomyces cerevisiae proteasomal genes. ScRpn4 orthologues are found in a number of other Saccharomycetes yeasts. Their functions, however, have not yet been characterised experimentally in vivo . We expressed the Debaryomyces hansenii DEHA2D12848 gene encoding an ScRpn4 orthologue (DhRpn4), in an S. cerevisiae strain lacking RPN4 . We showed that DhRpn4 activates transcription of proteasomal genes using ScRpn4 binding site and provides resistance to various stresses. The 43-238 aa segment of DhRpn4 contains an unique portable transactivation domain. Similar to the ScRpn4 N-terminus, this domain lacks a compact structure Moreover, upon overexpression in D. hansenii , DhRpn4 upregulates protesomal genes. Thus, we show that DhRpn4 is the activator for proteasomal genes.


Subject(s)
Gene Expression Regulation, Fungal , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomycetales/enzymology , Transcription Factors/metabolism , Proteasome Endopeptidase Complex/genetics , Protein Conformation , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomycetales/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
9.
Intervirology ; 59(2): 111-117, 2016.
Article in English | MEDLINE | ID: mdl-27875810

ABSTRACT

BACKGROUND: Infection with tick-borne encephalitis virus (TBEV) causes pathological changes in the central nervous system. However, the possible redox alterations in the infected cells that can contribute to the virus pathogenicity remain unknown. OBJECTIVE: In the current study we explored the ability of TBEV nonstructural protein 1 (NS1) to induce oxidative stress and activate antioxidant defense via the nuclear factor (erythroid-derived-2)-like 2/antioxidant response element (Nrf2/ARE) pathway. METHODS: HEK 293T cells were transfected with plasmid encoding NS1 protein, and the production of reactive oxygen species (ROS) was measured using oxidation-sensitive dyes, the activation of the ARE promoter was estimated using a reporter plasmid, and the expression of phase II detoxifying enzymes was quantified by measuring their mRNA levels using RT-qPCR. RESULTS: A high level of ROS production was detected in cells transfected with NS1-expressing plasmid. In addition, this protein activated the promoter with an ARE and upregulated the transcription of ARE-dependent genes that encode phase II enzymes. CONCLUSION: TBEV NS1 protein both triggers ROS production and activates a defense Nrf2/ARE pathway. These data suggest that a role of redox-mediated processes in TBEV-induced damage of the central nervous system should also be explored. These data can contribute to a better understanding of TBEV pathogenicity, further improvement of TBE treatment, and the development of vaccine candidates against this infection.


Subject(s)
Antioxidant Response Elements , Encephalitis Viruses, Tick-Borne/chemistry , Encephalitis Viruses, Tick-Borne/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Viral Nonstructural Proteins/physiology , Encephalitis Viruses, Tick-Borne/genetics , HEK293 Cells , HeLa Cells , Humans , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Transfection , Viral Nonstructural Proteins/genetics
10.
J Fungi (Basel) ; 9(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36983519

ABSTRACT

Various external and internal factors damaging DNA constantly disrupt the stability of the genome. Cells use numerous dedicated DNA repair systems to detect damage and restore genomic integrity in a timely manner. Ribonucleotide reductase (RNR) is a key enzyme providing dNTPs for DNA repair. Molecular mechanisms of indirect regulation of yeast RNR activity are well understood, whereas little is known about its direct regulation. The study was aimed at elucidation of the proteasome-dependent mechanism of direct regulation of RNR subunits in Saccharomyces cerevisiae. Proteome analysis followed by Western blot, RT-PCR, and yeast plating analysis showed that upregulation of RNR by proteasome deregulation is associated with yeast hyper resistance to 4-nitroquinoline-1-oxide (4-NQO), a UV-mimetic DNA-damaging drug used in animal models to study oncogenesis. Inhibition of RNR or deletion of RNR regulatory proteins reverses the phenotype of yeast hyper resistance to 4-NQO. We have shown for the first time that the yeast Rnr1 subunit is a substrate of the proteasome, which suggests a common mechanism of RNR regulation in yeast and mammals.

11.
ACS Synth Biol ; 10(2): 297-308, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33501828

ABSTRACT

The marine yeast Debaryomyces hansenii is of high importance in the food, chemical, and medical industries. D. hansenii is also a popular model for studying molecular mechanisms of halo- and osmotolerance. The absence of genome editing technologies hampers D. hansenii research and limits its biotechnological application. We developed novel and efficient single- and dual-guide CRISPR systems for markerless genome editing of D. hansenii. The single-guide system allows high-efficiency (up to 95%) mutation of genes or regulatory elements. The dual-guide system is applicable for efficient deletion of genomic loci. We used these tools to study transcriptional regulation of the 26S proteasome, an ATP-dependent protease complex whose proper function is vital for all cells and organisms. We developed a genetic approach to control the activity of the 26S proteasome by deregulation of its essential subunits. The mutant strains were sensitive to geno- and proteotoxic stresses as well as high salinity and osmolarity, suggesting a contribution of the proteasome to the extremophilic properties of D. hansenii. The developed CRISPR systems allow efficient D. hansenii genome engineering, providing a genetic way to control proteasome activity, and should advance applications of this yeast.


Subject(s)
CRISPR-Cas Systems , Debaryomyces/enzymology , Debaryomyces/genetics , Gene Editing/methods , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae/genetics , CRISPR-Associated Protein 9/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Extremophiles/enzymology , Extremophiles/genetics , Gene Expression Regulation , Genome, Fungal , Organisms, Genetically Modified , Osmoregulation/genetics , Oxidative Stress/genetics , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Salt Stress/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
12.
Front Oncol ; 9: 761, 2019.
Article in English | MEDLINE | ID: mdl-31456945

ABSTRACT

The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.

13.
FEBS Lett ; 582(23-24): 3459-64, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18804109

ABSTRACT

The 26S proteasome is a multi-subunit protease complex and plays an essential role in many basic cellular processes. The abundance of the 26S proteasome is controlled by a negative feedback circuit that involves the Rpn4p transcriptional activator. To date, the functional regions of Rpn4p are largely unknown. We mapped the Rpn4p transactivation domains by deletion analysis. The distal acidic domain has stronger transactivation potential than that of the proximal acidic domain. However, the N-terminal region, and not the acidic domains of Rpn4p, is crucial for Rpn4p function. Within the N-terminus, we mapped a novel transactivation domain, which may be regulated by some modification of lysines in a proteolysis-independent manner.


Subject(s)
DNA-Binding Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Transcription Factors/chemistry , Transcriptional Activation , Amino Acid Sequence , Amino Acid Substitution , Arginine/chemistry , Arginine/genetics , Arginine/metabolism , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Molecular Sequence Data , Protein Structure, Tertiary/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Deletion , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Heliyon ; 4(10): e00894, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30417153

ABSTRACT

Cell homeostasis and regulation of metabolic pathways are ensured by synthesis, proper folding and efficient degradation of a vast amount of proteins. Ubiquitin-proteasome system (UPS) degrades most intracellular proteins and thus, participates in regulation of cellular metabolism. Within the UPS, proteasomes are the elements that perform substrate cleavage. However, the proteasomes in the organism are diverse. Structurally different proteasomes are present not only in different types of cells, but also in a single cell. The reason for proteasome heterogeneity is not fully understood. This review briefly encompasses mammalian proteasome structure and function, and discusses biological relevance of proteasome diversity for a range of important cellular functions including internal and external signaling.

15.
Mol Cell Biol ; 23(18): 6455-68, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12944473

ABSTRACT

Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken beta-globin domain. We observed two sharp transitions of MENT concentration coinciding with the beta-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation.


Subject(s)
Avian Proteins , Chickens , Chromosomal Proteins, Non-Histone/metabolism , Globins/metabolism , Protein Structure, Tertiary , 3T3 Cells , Acetylation , Animals , Cell Division/physiology , Cells, Cultured , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Enzyme Inhibitors/pharmacology , Erythrocytes/cytology , Erythrocytes/physiology , Histone Deacetylase Inhibitors , Histones/metabolism , Lymphocytes/cytology , Lymphocytes/physiology , Lysine/metabolism , Methylation , Mice
16.
Cell Stress Chaperones ; 22(5): 687-697, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28447215

ABSTRACT

The heat shock protein 70 (Hsp70, human HSPA1A) plays indispensable roles in cellular stress responses and protein quality control (PQC). In the framework of PQC, it cooperates with the ubiquitin-proteasome system (UPS) to clear damaged and dysfunctional proteins in the cell. Moreover, Hsp70 itself is rapidly degraded following the recovery from stress. It was demonstrated that its fast turnover is mediated via ubiquitination and subsequent degradation by the 26S proteasome. At the same time, the effect of Hsp70 on the functional state of proteasomes has been insufficiently investigated. Here, we characterized the direct effect of recombinant Hsp70 on the activity of 20S and 26S proteasomes and studied Hsp70 degradation by the 20S proteasome in vitro. We have shown that the activity of purified 20S proteasomes is decreased following incubation with recombinant human Hsp70. On the other hand, high concentrations of Hsp70 activated 26S proteasomes. Finally, we obtained evidence that in addition to previously reported ubiquitin-dependent degradation, Hsp70 could be cleaved independent of ubiquitination by the 20S proteasome. The results obtained reveal novel aspects of the interplay between Hsp70 and proteasomes.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Cell Line , Electrophoresis, Polyacrylamide Gel , HSP70 Heat-Shock Proteins/genetics , Humans , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
J Alzheimers Dis ; 59(4): 1415-1426, 2017.
Article in English | MEDLINE | ID: mdl-28759972

ABSTRACT

Heat shock protein 70, encoded by the HSPA1A gene in humans, is a key component of the machinery that protects neuronal cells from various stress conditions and whose production significantly declines during the course of aging and as a result of several neurodegenerative diseases. Herein, we investigated whether sub-chronic intranasal administration of exogenous Hsp70 (eHsp70) exerts a neuroprotective effect on the temporal cortex and areas of the hippocampus in transgenic 5XFAD mice, a model of Alzheimer's disease. The quantitative analysis of neuronal pathologies in the compared groups, transgenic (Tg) versus non-transgenic (nTg), revealed high level of abnormalities in the brains of transgenic mice. Treatment with human recombinant Hsp70 had profound rejuvenation effect on both neuronal morphology and functional state in the temporal cortex and hippocampal regions in transgenic mice. Hsp70 administration had a smaller, but still significant, effect on the functional state of neurons in non-transgenic mice as well. Using deep sequencing, we identified multiple differentially expressed genes (DEGs) in the hippocampus of transgenic and non-transgenic mice. Furthermore, this analysis demonstrated that eHsp70 administration strongly modulates the spectrum of DEGs in transgenic animals, reverting to a pattern similar to that observed in non-transgenic age-matched mice, which included upregulation of genes responsible for amine transport, transmission of nerve impulses and other pathways that are impaired in 5XFAD mice. Overall, our data indicate that Hsp70 treatment may be an effective therapeutic against old age diseases of the Alzheimer's type.


Subject(s)
Alzheimer Disease/drug therapy , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/administration & dosage , Neuroprostanes/administration & dosage , Administration, Intranasal/methods , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Analysis of Variance , Animals , Brain/pathology , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Transgenic , Mutation/genetics , Neurons/drug effects , Presenilin-1/genetics
18.
Cell Stress Chaperones ; 11(3): 276-86, 2006.
Article in English | MEDLINE | ID: mdl-17009601

ABSTRACT

Mammalian responses to bacterial lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria can lead to an uncontrolled inflammatory reaction that can be deadly for the host. We checked whether heat shock protein 70 (Hsp70) protein is able to protect animals from the deleterious effects of bacterial LPS by monitoring the effect of exogenous Hsp70 injections before and after LPS administration. Our research with rats demonstrates for the first time that administration of exogeneous Hsp70 before and after LPS challenges can reduce mortality rates and modify several parameters of hemostasis and hemodynamics. Hsp70 isolated from bovine muscles showed significant protective effects against the impaired coagulation and fibrinolytic systems caused by LPS, and reduced the mortality caused by Escherichia coli and Salmonella typhimurium LPS injections significantly. Characteristically, Hsp70 preparations used in the experiments result in different effects when administered before and after an LPS challenge, and the effects of Hsp70 injections also differ significantly depending on the origin of the LPS (E coli vs S typhimurium). Based on our data, mammalian Hsp70 appears to be an attractive target in therapeutic strategies designed to stimulate endogenous protective mechanisms against many deleterious consequences of septic shock by accelerating the functional recovery of susceptible organs in humans.


Subject(s)
Escherichia coli Infections/mortality , HSP70 Heat-Shock Proteins/administration & dosage , HSP70 Heat-Shock Proteins/metabolism , Salmonella Infections, Animal/mortality , Shock, Septic/mortality , Animals , Cattle , Escherichia coli/pathogenicity , HSP70 Heat-Shock Proteins/analysis , HSP70 Heat-Shock Proteins/therapeutic use , Hemodynamics/drug effects , Hemostasis/drug effects , Lipopolysaccharides/toxicity , Male , Rats , Rats, Wistar , Salmonella typhimurium/pathogenicity , Shock, Septic/chemically induced , Shock, Septic/drug therapy , Shock, Septic/microbiology , Survival Analysis , Time Factors
19.
J Alzheimers Dis ; 54(2): 763-76, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27567864

ABSTRACT

Accumulation of amyloid-ß (Aß) in neurons accompanies Alzheimer's disease progression. In the cytoplasm Aß influences activity of proteasomes, the multisubunit protein complexes that hydrolyze the majority of intracellular proteins. However, the manner in which Aß affects the proteolytic activity of proteasomes has not been established. In this study the effect of Aß42 and Aß42 with isomerized Asp7 on activity of different forms of proteasomes has been analyzed. It has been shown that Aß peptides efficiently reduce activity of the 20S proteasomes, but increase activity of the 20S proteasomes capped with the 19S and/or 11S regulators. Modulation of proteasome activity is mainly determined by the C-terminal segment of Aß (amino acids 17-42). This study demonstrated an important role of proteasome regulators in the interplay between Aß and the proteasomes.


Subject(s)
Amyloid beta-Peptides/pharmacology , Peptide Fragments/pharmacology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Amino Acid Sequence , Cell Line, Tumor , Enzyme Activation/drug effects , Enzyme Activation/physiology , Humans , Proteasome Endopeptidase Complex/chemistry
20.
Cell Stress Chaperones ; 21(6): 1055-1064, 2016 11.
Article in English | MEDLINE | ID: mdl-27511022

ABSTRACT

The production of major human heat shock protein Hsp70 (HSPA1A) in a eukaryotic expression system is needed for testing and possible medical applications. In this study, transgenic mice were produced containing wild-type human Hsp70 allele in the vector providing expression in the milk. The results indicated that human Hsp70 was readily expressed in the transgenic animals but did not apparently preserve its intact structure and, hence, it was not possible to purify the protein using conventional isolation techniques. It was suggested that the protein underwent glycosylation in the process of expression, and this quite common modification for proteins expressed in the milk complicated its isolation. To check this possibility, we mutated all presumptive sites of glycosylation and tested the properties of the resulting modified Hsp70 expressed in E. coli. The investigation demonstrated that the modified protein exhibited all beneficial properties of the wild-type Hsp70 and was even superior to the latter for a few parameters. Based on these results, a transgenic mouse strain was obtained which expressed the modified Hsp70 in milk and which was easy to isolate using ATP columns. Therefore, the developed construct can be explored in various bioreactors for reliable manufacture of high quality, uniform, and reproducible human Hsp70 for possible medical applications including neurodegenerative diseases and cancer.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Milk/metabolism , Animals , Female , HSP70 Heat-Shock Proteins/genetics , Humans , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C3H , Mice, Transgenic , Mutagenesis, Site-Directed , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Protein Refolding , Reactive Oxygen Species/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL