Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Exp Zool B Mol Dev Evol ; 340(6): 414-423, 2023 09.
Article in English | MEDLINE | ID: mdl-37095629

ABSTRACT

During the evolution of astacin metalloprotease family genes, gene duplication occurred, especially in the lineage of teleosts, in which several types of astacins containing six conserved cysteines (c6ast) emerged. One of them is patristacin, originally found in syngnathid fishes, such as pipefishes and seahorses. Patristacin is expressed in the brood pouch and is present on the same chromosome as other c6ast (pactacin and nephrosin) genes. We first surveyed all the genes from 33 teleost species using a genome database, and characterized the genes by phylogenetic analysis. Pactacin and nephrosin gene homologs were found from all the examined species with only few exceptions, while patristacin gene homologs were found from only several lineages. The patristacin gene homologs were found as multicopy genes in most species of Percomorpha, one of the diverged groups in teleosts. Further diversification of the gene occurred during the evolution of Atherinomorphae, one of the groups in Percomorpha. Fishes of Atherinomorphae possess two types of patristacin, belonging to subclades 1 and 2. Among the Atherinomorpha, we chose the southern platyfish to examine the patristacin gene expression. Platyfish possess eight patristacin gene homologs, called XmPastn1, 2, 3, 4, 5, 7, 10, and 11. Of these genes, only XmPastn2 belongs to subclade 1, while the other seven belong to subclade 2. Only XmPastn2 showed strong expression in several organs of adult platyfish, as observed in reverse-transcription polymerase chain reaction of RNA extracts. Cells expressing XmPastn2 were predominantly mucus-secreting cells found in epidermis around the jaw, as revealed by in-situ hybridization. This result suggests that XmPastn2 is secreted and may contribute to mucus formation or secretion.


Subject(s)
Cyprinodontiformes , Evolution, Molecular , Animals , Phylogeny , Genome , Fishes/genetics , Chromosomes , Gene Duplication , Cyprinodontiformes/genetics
2.
Cell Tissue Res ; 393(1): 47-62, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37227506

ABSTRACT

The seahorse is one of the most unique teleost fishes in its morphology. The body is surrounded by bony plates and spines, and the male fish possess a brooding organ, called the brood pouch, on their tail. The surfaces of the brood pouch and the spines are surrounded by characteristic so-called flame cone cells. Based on our histological observations, flame cone cells are present in the seahorse Hippocampus abdominalis, but not in the barbed pipefish Urocampus nanus or the seaweed pipefish Syngnathus schlegeli, both of which belong to the same family as the seahorse. In the flame cone cells, we observed expression of an "orphan gene" lacking homologs in other lineages. This gene, which we named the proline-glycine rich (pgrich) gene, codes for an amino acid sequence composed of repetitive units. In situ hybridization and immunohistochemical analyses detected pgrich-positive signals from the flame cone cells. Based on a survey of the genome sequences of 15 teleost species, the pgrich gene is only found from some species of Syngnathiformes (namely, the genera Syngnathus and Hippocampus). The amino acid sequence of the seahorse PGrich is somewhat similar to the sequence deduced from the antisense strand of elastin. Furthermore, there are many transposable elements around the pgrich gene. These results suggest that the pgrich gene may have originated from the elastin gene with the involvement of transposable elements and obtained its novel function in the flame cone cells during the evolution of the seahorse.


Subject(s)
Smegmamorpha , Animals , Male , Smegmamorpha/genetics , Smegmamorpha/anatomy & histology , Elastin , DNA Transposable Elements , Fishes/genetics , Epithelium
3.
Bioorg Med Chem ; 90: 117351, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37247585

ABSTRACT

Elastic fibers consist of an insoluble inner core of elastin, which confers elasticity and resilience to vertebral organs and tissues. Desmosine (DES) and isodesmosine (IDES) are potential biomarkers of pathologies that lead to decreased elastin turnover. Mice are commonly used in research to mimic humans because of their similar genetics, physiology, and organ systems. The present study thus used senescent accelerated prone (SAMP10) and senescent accelerated resistant (SAMR1) mice to examine the connection between aging and histological or biomolecular changes. Mice were divided into three groups: SAMP10 fed a control diet (CD), SAMP10 fed a high-fat diet (HFD), and SAMR1 fed a CD. The percent liver to total body weight ratio (%LW/BW), desmosines (DESs or DES/IDES) content, and histological alterations in skin samples were evaluated. DESs were quantified using an isotope-dilution liquid chromatography-tandem mass spectrometry method with isodesmosine-13C3,15N1 as the internal standard (ISTD). The assays were repeatable, reproducible, and accurate, with %CV values ≤ (1.90, 1.77, and 3.03), ISTD area %RSD of (1.54, 0.92, and 1.13), and %AC of (99.02 ± 1.86, 101.00 ± 2.30, and 101.30 ± 2.90) for the calibrations (equimolar DES/IDES, DES, and IDES, respectively). The average DESs content per dry-weight abdominal skin and %LW/BW were similar between the three groups. Histological analyses revealed elastin fibers in five randomly selected samples. The epidermis and dermal white adipose tissue layers were thicker in SAMP10 mice than SAMR1 mice. Thus, characteristic signs of aging in SAMP10 and SAMR1 mice could not be differentiated based on measurement of DESs content of the skin or %LW/BW, but aging could be differentiated based on microscopic analysis of histological changes in the skin components of SAMP10 and SAMR1 mice.


Subject(s)
Elastin , Skin Aging , Humans , Mice , Animals , Chromatography, Liquid/methods , Elastin/chemistry , Tandem Mass Spectrometry/methods , Desmosine/analysis , Isodesmosine/analysis
4.
Bioorg Med Chem ; 82: 117216, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36842401

ABSTRACT

Ligamentum flavum (LF) pathologies often lead to severe myelopathy or radiculopathy characterized by reduced elasticity, obvious thickening, or worsened ossification. Elastin endows critical mechanical properties to tissues and organs such as vertebrae and ligaments. Desmosine (DES) and isodesmosine (IDES) are crosslinkers of elastin monomers called tropoelastin. These crosslinkers are potential biomarkers of chronic obstructive pulmonary disease. As a biological diagnostic tool that supplements existing symptomatic, magnetic resonance imaging scanning or radiological imaging diagnostic measures for LF hypertrophy and associated pathologies, an isotope-dilution liquid chromatography-tandem mass spectrometry method with selected reaction monitoring mode for the quantitation of DESs in human plasma, urine, cerebrospinal fluid (CSF), and yellow ligamentum was investigated. Isotopically labeled IDES-13C3,15N1 was used as an internal standard (ISTD) for DES quantitation for the first time. The samples plus ISTD were hydrolyzed with 6 N hydrochloric acid. Analytes and ISTD were extracted using a solid phase extraction cellulose cartridge column. The assays were repeatable, reproducible, and accurate with % CV ≤ 7.7, ISTD area % RSD of 7.6, and % AC ≤ (101.2 ± 3.90) of the calibrations. The ligamentum samples gave the highest average DES/IDES content (2.38 µg/mg) on a dry-weight basis. A high percentage of the CSF samples showed almost no DESs. Urine and plasma samples of patients showed no significant difference from the control (p-value = 0.0519 and 0.5707, respectively). Microscopy of the yellow ligamentum samples revealed dark or blue-colored zones of elastin fibers that retained the hematoxylin dye and highly red-colored zones of collagen after counterstaining with van Gieson solution. Thus, we successfully developed a method for DES/IDES quantitation in clinical samples.


Subject(s)
Elastin , Ligamentum Flavum , Humans , Chromatography, Liquid/methods , Elastin/analysis , Elastin/chemistry , Desmosine/analysis , Tandem Mass Spectrometry/methods , Ligamentum Flavum/chemistry , Hypertrophy
5.
J Exp Zool B Mol Dev Evol ; 338(3): 181-191, 2022 05.
Article in English | MEDLINE | ID: mdl-35189032

ABSTRACT

The zona pellucida (ZP) protein constitutes the egg envelope, which surrounds the vertebrate embryo. We performed a comprehensive study on the molecular evolution of ZP genes in Teleostei by cloning and analyzing the expression of ZP genes in fish of Anguilliformes in Elopomorpha, Osteoglossiformes in Osteoglossomorpha, and Clupeiformes in Otocephala to cover unsurveyed fish groups in Teleostei. The present results confirmed findings from our previous reports that the principal organ of ZP gene expression changed from ovary to liver in the common ancestors of Clupeocephala. Even fish species that synthesize egg envelopes in the liver carry the ovary-expressed ZP proteins as minor egg envelope components that were produced by gene duplication during the early stage of Teleostei evolution. The amino acid repeat sequences located at the N-terminal region of ZP proteins are known to be the substrates of transglutaminase responsible for egg envelope hardening and hatching. A repeat sequence was found in zona pellucida Cs of phylogenetically early diverged fish. After changing the synthesis organ, its role is inherited by the N-terminal Pro-Gln-Xaa repeat sequence in liver-expressed zona pellucida B genes of Clupeocephala. These results suggest that teleost ZP genes have independently evolved to maintain fish-specific functions, such as egg envelope hardening and egg envelope digestion, at hatching.


Subject(s)
Egg Proteins , Zona Pellucida , Amino Acid Sequence , Animals , Egg Proteins/genetics , Egg Proteins/metabolism , Female , Fishes/genetics , Fishes/metabolism , Phylogeny , Zona Pellucida/metabolism , Zona Pellucida Glycoproteins/genetics
6.
Photochem Photobiol Sci ; 21(10): 1819-1831, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35781788

ABSTRACT

This study examines the microwave chemical risks posed by photocatalysts present in sunscreens (physical filters) against the increasing use of microwaves (radio waves) in the environment, sometimes referred to as electronic smog. Specifically, the study assesses the damage caused by silica-coated physical filters (photocatalysts, TiO2⋅ and/or ZnO) contained in commercially available sunscreens and fresh silica-coated ZnO for sunscreens to mouse skin fibroblasts cells (NIH/3T3) evaluated in vitro by the life/death of cells using two types of electromagnetic waves: UV light and microwave radiation, and under simultaneous irradiation with both UV light and microwaves. Conditions of the electromagnetic waves were such as to be of lower light irradiance than that of UVA/UVB radiation from incident sunlight, and with microwaves near the threshold power levels that affect human health. The photocatalytic activity of the physical filters was investigated by examining the degradation of the rhodamine B (RhB) dye in aqueous media and by the damage caused to DNA plasmids from E. coli. Compared to the photocatalytic activity of ZnO and TiO2 when irradiated with UV light alone, a clear enhanced photocatalytic activity was confirmed upon irradiating these physical filters concurrently with UV and microwaves. Moreover, the uptake of these metal oxides into the NIH/3T3 cells led to the death of these cells as a result of the enhanced photocatalytic activity of the metal oxides on exposure to microwave radiation.


Subject(s)
Nanoparticles , Zinc Oxide , Mice , Animals , Humans , Sunscreening Agents/pharmacology , Microwaves , Escherichia coli , Smog , Ultraviolet Rays , Silicon Dioxide
7.
Mol Reprod Dev ; 88(6): 459-470, 2021 06.
Article in English | MEDLINE | ID: mdl-33960059

ABSTRACT

In the present study, we aimed to evaluate the effects of hatching enzymes on the egg envelope digestion during the hatching period in the male brooding seahorse. The complementary DNAs encoding two hatching-enzyme genes, high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE), were cloned and functionally characterized from the lined seahorse (Hippocampus erectus). The genomic-synteny analysis confirmed that teleosts shared LCE gene synteny. In contrast, the genomic location of HCE was found to be conserved with pipefish, but not other teleosts, suggesting that translocation into a novel genomic location occurred. Whole-mount in situ hybridization showed that HCE and LCE mRNAs were expressed in hatching gland cells. To determine the digestion mechanisms of HCE and LCE in hatching, recombinant HCE and LCE were generated and their enzyme activities were examined using fertilized egg envelopes and synthetic peptides. Seahorse HCE and LCE independently digested and softened the egg envelopes of the lined seahorse. Although the egg envelope was digested more following HCE and LCE co-treatment, envelope solubilization was not observed. Indeed, both HCE and LCE showed similar substrate specificities toward four different synthetic peptides designed from the cleavage sites of egg envelope proteins. HCE and LCE proteins from other euteleostean fishes showed different specificities, and the egg envelope was solubilized by the cooperative action of HCE and LCE. These results suggest that the function of LCE was degenerated in the lined seahorse. Our results imply a digestion mechanism for evolutionary adaptation in ovoviviparous fish with male pregnancy.


Subject(s)
Chorion/metabolism , Egg Proteins/metabolism , Fish Proteins/metabolism , Peptide Hydrolases/metabolism , Protein Precursors/metabolism , Smegmamorpha/metabolism , Animals , Caseins/metabolism , Catalytic Domain , DNA, Complementary/genetics , Digestion , Enzyme Induction , Fish Proteins/chemistry , Fishes/genetics , Male , Peptide Hydrolases/chemistry , Peptides/chemical synthesis , Peptides/metabolism , Phylogeny , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Synteny
8.
J Exp Zool B Mol Dev Evol ; 332(3-4): 81-91, 2019 05.
Article in English | MEDLINE | ID: mdl-30964605

ABSTRACT

Most teleostean embryos develop and hatch without parental assistance, though some receive parental care. We focused on a paternal brood-care species, the barred-chin blenny (Rhabdoblennius nitidus [Günther, 1861]). As hatching approached, fanning behavior by the male parent drastically increased and then embryos hatch. In the absence of the male parent, most embryos failed to hatch. However, the hatching rate was greatly assisted by introducing an artificial water current, suggesting that paternal assistance other than for aeration is required for successful embryo hatching. Next, we analyzed genes for the hatching enzyme and egg-envelope protein, which were successfully cloned from barred-chin blenny, and found the expression patterns differed from those of other euteleosts. Generally, high choriolytic enzyme swells the intact egg envelope, and then low choriolytic enzyme solubilizes the swollen envelope. The expression levels of both the enzymes, but especially the latter, were much lower in barred-chin blenny that is known in most other oviparous species. In addition, the main component of the egg envelope was changed into ChgHm and choriogenin L (ChgL) in barred-chin blenny, whereas ChgH and ChgL for other euteleosts. These in barred-chin blenny would result in ineffective egg-envelope digestion because the posthatching egg envelopes were observed to be swollen but not solubilized. Male parental assistance by fanning until hatching may compensate for this insufficiency. Our study illustrates an example of the evolution of parent-embryo interaction built on a novel relationship: Degradation of the hatching enzyme/egg-envelope digestion system, accompanied by male parental hatching assistance.


Subject(s)
Behavior, Animal , Fishes/physiology , Parenting , Animals , Cloning, Molecular , DNA, Complementary/genetics , Embryo, Nonmammalian , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/genetics , Gene Expression Regulation/physiology , Male , Time Factors
9.
J Exp Zool B Mol Dev Evol ; 328(3): 240-258, 2017 05.
Article in English | MEDLINE | ID: mdl-28229554

ABSTRACT

Teleost egg envelope generally consists of a thin outer layer and a thick inner layer. The inner layer of the Pacific herring egg envelope is further divided into distinct inner layers I and II. In our previous study, we cloned four zona pellucida (ZP) proteins (HgZPBa, HgZPBb, HgZPCa, and HgZPCb) from Pacific herring, two of which (HgZPBa and HgZPCa) were synthesized in the liver and two (HgZPBb and HgZPCb) in the ovary. In this study, we raised antibodies against these four proteins to identify their locations using immunohistochemistry. Our results suggest that inner layer I is constructed primarily of HgZPBa and Ca, whereas inner layer II consists primarily of HgZPBa. HgZPBb and Cb were minor components of the envelope. Therefore, the egg envelope of Pacific herring is primarily composed of liver-synthesized ZP proteins. A comparison of the thickness of the fertilized egg envelopes of 55 species suggested that egg envelopes derived from liver-synthesized ZP proteins tended to be thicker in demersal eggs than those in pelagic eggs, whereas egg envelopes derived from ovarian-synthesized ZP proteins had no such tendency. Our comparison suggests that the prehatching period of an egg with a thick egg envelope is longer than that of an egg with a thin egg envelope. We hypothesized that acquisition of liver-synthesized ZP proteins during evolution conferred the ability to develop a thick egg envelope, which allowed species with demersal eggs to adapt to mechanical stress in the prehatching environment by thickening the egg envelope, while pelagic egg envelopes have remained thin.


Subject(s)
Biological Evolution , Ovum/metabolism , Zona Pellucida Glycoproteins/biosynthesis , Zona Pellucida/metabolism , Amino Acid Sequence/genetics , Animals , Cloning, Molecular , Egg Proteins/biosynthesis , Egg Proteins/genetics , Female , Fishes/genetics , Fishes/growth & development , Ovary/growth & development , Ovary/metabolism , Ovum/growth & development , Zona Pellucida Glycoproteins/genetics
10.
J Exp Zool B Mol Dev Evol ; 326(2): 125-35, 2016 03.
Article in English | MEDLINE | ID: mdl-26987447

ABSTRACT

Syngnathiform fishes carry their eggs in a brood structure found in males. The brood structure differs from species to species: seahorses carry eggs within enclosed brood pouch, messmate pipefish carry eggs in the semi-brood pouch, and alligator pipefish carry eggs in the egg compartment on abdomen. These egg protection strategies were established during syngnathiform evolution. In the present study, we compared the hatching mode of protected embryos of three species. Electron microscopic observations revealed that alligator pipefish and messmate pipefish egg envelopes were thicker than those of seahorses, suggesting that the seahorse produces a weaker envelope. Furthermore, molecular genetic analysis revealed that these two pipefishes possessed the egg envelope-digesting enzymes, high choriolytic enzyme (HCE), and low choriolytic enzyme (LCE), as do many euteleosts. In seahorses, however, only HCE gene expression was detected. When searching the entire seahorse genome by high-throughput DNA sequencing, we did not find a functional LCE gene and only a trace of the LCE gene exon was found, confirming that the seahorse LCE gene was pseudogenized during evolution. Finally, we estimated the size and number of hatching gland cells expressing hatching enzyme genes by whole-mount in situ hybridization. The seahorse cells were the smallest of the three species, while they had the greatest number. These results suggest that the isolation of eggs from the external environment by paternal bearing might bring the egg envelope thin, and then, the hatching enzyme genes became pseudogenized. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biological Evolution , Smegmamorpha/embryology , Smegmamorpha/genetics , Animals , Cloning, Molecular , DNA, Complementary , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Ovum
11.
Zoolog Sci ; 33(3): 272-81, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27268981

ABSTRACT

Hatching gland cells (HGCs) originate from different germ layers between frogs and teleosts, although the hatching enzyme genes are orthologous. Teleostei HGCs differentiate in the mesoendodermal cells at the anterior end of the involved hypoblast layer (known as the polster) in late gastrula embryos. Conversely, frog HGCs differentiate in the epidermal cells at the neural plate border in early neurula embryos. To infer the transition in the developmental origin of HGCs, we studied two basal ray-finned fishes, bichir (Polypterus) and sturgeon. We observed expression patterns of their hatching enzyme (HE) and that of three transcription factors that are critical for HGC differentiation: KLF17 is common to both teleosts and frogs; whereas FoxA3 and Pax3 are specific to teleosts and frogs, respectively. We then inferred the transition in the developmental origin of HGCs. In sturgeon, the KLF17, FoxA3, and HE genes were expressed during the tailbud stage in the cell mass at the anterior region of the body axis, a region corresponding to the polster in teleost embryos. In contrast, the bichir was suggested to possess both teleost- and amphibian-type HGCs, i.e. the KLF17 and FoxA3 genes were expressed in the anterior cell mass corresponding to the polster, and the KLF17, Pax3 and HE genes were expressed in dorsal epidermal layer of the head. The change in developmental origin is thought to have occurred during the evolution of basal ray-finned fish, because bichir has two HGCs, while sturgeon only has the teleost-type.


Subject(s)
Anura/classification , Anura/physiology , Biological Evolution , Cell Differentiation , Embryo, Nonmammalian/cytology , Fishes/classification , Fishes/physiology , Animals , Endoderm/cytology , Fish Proteins/genetics , Gene Expression Regulation, Developmental , Metalloendopeptidases/genetics , Neural Plate/cytology , Phylogeny , Transcription Factors/genetics
12.
J Exp Zool B Mol Dev Evol ; 324(8): 720-32, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26514945

ABSTRACT

We investigated the evolution of the hatching enzyme gene using bester sturgeon (hybrid of Acipencer ruthenus and Huso huso), a basal member of ray-finned fishes. We purified the bester hatching enzyme from hatching liquid, yielding a single band on SDS-PAGE, then isolated its cDNA from embryos by PCR. The sturgeon hatching enzyme consists of an astacin family protease domain and a CUB domain. The CUB domains are present in frog and bird hatching enzymes, but not in teleostei, suggesting that the domain structure of sturgeon hatching enzyme is the tetrapod type. The purified hatching enzyme swelled the egg envelope, and selectively cleaved one of five egg envelope proteins, ZPAX. Xenopus hatching enzyme preferentially digests ZPAX, thus, the egg envelope digestion process is conserved between amphibians and basal ray-finned fish. Teleostei hatching enzymes cleave the repeat sequences at the N-terminal region of ZPB and ZPC, suggesting that the targets of the teleostei hatching enzymes differ from those of amphibians and sturgeons. Such repeat sequences were not found in the N-terminal region of ZPB and ZPC of amphibians and sturgeons. Our results suggest that the change in substrates of the hatching enzymes was accompanied by the mutation of the amino acid sequence of N-terminal regions of ZPB and ZPC. We conclude that the changes in the mechanism of egg envelope digestion, including the change in the domain structure of the hatching enzymes and the switch in substrate, occurred during the evolution of teleostei, likely triggered by the teleost-specific third whole genome duplication. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 720-732, 2015. © 2015 Wiley Periodicals, Inc.


Subject(s)
Egg Proteins/genetics , Fishes/metabolism , Animals , Biological Evolution , Egg Proteins/metabolism , Embryo, Nonmammalian/enzymology , Fishes/embryology , Hybridization, Genetic , Metalloendopeptidases/genetics , Phylogeny , Protein Domains , Zona Pellucida/enzymology
13.
J Exp Zool B Mol Dev Evol ; 324(1): 41-50, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25504928

ABSTRACT

Ovoviviparous fish, whose embryonic development and hatching take place in the maternal body, is one of the good model organisms for studying adaptive evolution. Using genome database of the ovoviviparous platy Xiphophorus maculatus, we tried to search hatching enzyme genes (high choriolytic enzyme HCE and low choriolytic enzyme LCE) and egg envelope protein genes (choriogenin H, Hm, and L). Analysis of genes co-localized with them confirmed that shared synteny was found between platy and medaka genome. Both hatching enzyme genes HCE and LCE were pseudogenized in platy. In addition, one of the three choriogenin genes Hm was completely lost from the genome, the other two genes H and L encoded functional proteins. On the other hand, the expression of H and L was very low as compared to oviparous fishes, and the platy egg envelope was extremely thinner. Considering that ovoviviparous fish embryos are protected in the maternal body, an importance of egg envelope for protection of egg/embryo would be reduced in the ovoviviparous fishes. Platy embryos would escape from their thin egg envelope without help of hatching enzymes. In another ovoviviparous fish, black rockfish belonging to different order from the platy, one of the hatching enzyme genes has been reported to be pseudogenized, that is, the embryo of black rockfish can escape from egg envelope by only one hatching enzyme HCE. Adaptive evolution of the hatching strategy of ovoviviparous teleosts may be established by pseudogenization of hatching enzyme genes and/or lowering of expression and/or pseudogenization of hatching enzyme and egg envelope genes.


Subject(s)
Fishes/genetics , Pseudogenes , Amino Acid Sequence , Animals , Biological Evolution , Egg Proteins/genetics , Egg Proteins/metabolism , Embryo, Nonmammalian/physiology , Female , Fishes/physiology , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Molecular Sequence Data , Ovoviviparity , Ovum/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism
14.
BMC Evol Biol ; 14: 221, 2014 Oct 19.
Article in English | MEDLINE | ID: mdl-25326699

ABSTRACT

BACKGROUND: Duplication and subsequent neofunctionalization of the teleostean hatching enzyme gene occurred in the common ancestor of Euteleostei and Otocephala, producing two genes belonging to different phylogenetic clades (clade I and II). In euteleosts, the clade I enzyme inherited the activity of the ancestral enzyme of swelling the egg envelope by cleavage of the N-terminal region of egg envelope proteins. The clade II enzyme gained two specific cleavage sites, N-ZPd and mid-ZPd but lost the ancestral activity. Thus, euteleostean clade II enzymes assumed a new function; solubilization of the egg envelope by the cooperative action with clade I enzyme. However, in Otocephala, the clade II gene was lost during evolution. Consequently, in a late group of Otocephala, only the clade I enzyme is present to swell the egg envelope. We evaluated the egg envelope digestion properties of clade I and II enzymes in Gonorynchiformes, an early diverging group of Otocephala, using milkfish, and compared their digestion with those of other fishes. Finally, we propose a hypothesis of the neofunctionalization process. RESULTS: The milkfish clade II enzyme cleaved N-ZPd but not mid-ZPd, and did not cause solubilization of the egg envelope. We conclude that neofunctionalization is incomplete in the otocephalan clade II enzymes. Comparison of clade I and clade II enzyme characteristics implies that the specificity of the clade II enzymes gradually changed during evolution after the duplication event, and that a change in substrate was required for the addition of the mid-ZPd site and loss of activity at the N-terminal region. CONCLUSIONS: We infer the process of neofunctionalization of the clade II enzyme after duplication of the gene. The ancestral clade II gene gained N-ZPd cleavage activity in the common ancestral lineage of the Euteleostei and Otocephala. Subsequently, acquisition of cleavage activity at the mid-ZPd site and loss of cleavage activity in the N-terminal region occurred during the evolution of Euteleostei, but not of Otocephala. The clade II enzyme provides an example of the development of a neofunctional gene for which the substrate, the egg envelope protein, has adapted to a gradual change in the specificity of the corresponding enzyme.


Subject(s)
Evolution, Molecular , Fishes/genetics , Fishes/metabolism , Metalloendopeptidases/metabolism , Amino Acid Sequence , Animals , Biological Evolution , Egg Proteins/metabolism , Fishes/classification , Genes, Duplicate , Glycoproteins/metabolism , Metalloendopeptidases/chemistry , Molecular Sequence Data , Phylogeny , Sequence Alignment , Zona Pellucida/metabolism
15.
Zoolog Sci ; 31(11): 709-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25366152

ABSTRACT

We compared several characteristics of the pelagic eggs of Verasper variegatus with those of demersal eggs of Pseudopleuronectes yokohamae, both in the order Pleuronectiformes (halibuts or flatfishes). V. variegatus eggs had about twice the diameter of P. yokohamae eggs. However, the total egg protein weight of P. yokohamae was similar to that of V. variegatus. The specific gravity of P. yokohamae eggs was calculated to be 7-fold that of V. variegatus. The difference in size is the main feature distinguishing the two types of egg. The thickness of the egg envelope of P. yokohamae- more than twice that of V. variegatus-must affect the manner of hatching. The amount of hatching enzyme synthesized in pre-hatching embryo was estimated to be larger in P. yokohamae than V. variegatus. The distribution of hatching gland cells differed between the species. In V. variegates embryos, these were located on the yolk sac as a narrow ring-shaped belt, resulting in cleavage of the egg envelope into two parts by digesting a limited region of the egg envelope, called "rim-hatching". The hatching gland cells of P. yokohamae embryos were distributed all over the surface of the yolk sac, forming a hole through which the embryo could escape. Thus, the location of the hatching gland cells in pre-hatching embryos varied during the evolution of the Pleuronectiformes, depending on the egg type and manner of hatching.


Subject(s)
Flatfishes/classification , Flatfishes/physiology , Ovum/classification , Ovum/physiology , Amino Acid Sequence , Animals , Flatfishes/genetics , Gene Expression Regulation, Enzymologic , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Molecular Sequence Data , Ovum/ultrastructure , Phylogeny , Species Specificity
16.
BMC Evol Biol ; 13: 231, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24161109

ABSTRACT

BACKGROUND: Hatching enzyme is a protease that digests the egg envelope, enabling hatching of the embryo. We have comprehensively studied the molecular mechanisms of the enzyme action to its substrate egg envelope, and determined the gene/protein structure and phylogenetic relationships. Because the hatching enzyme must have evolved while maintaining its ability to digest the egg envelope, the hatching enzyme-egg envelope protein pair is a good model for studying molecular co-evolution of a protease and its substrate. RESULTS: Hatching enzymes from medaka (Oryzias latipes) and killifish (Fundulus heteroclitus) showed species-specific egg envelope digestion. We found that by introducing four medaka-type residue amino acid substitutions into recombinant killifish hatching enzyme, the mutant killifish hatching enzyme could digest medaka egg envelope. Further, we studied the participation of the cleavage site of the substrate in the species-specificity of hatching enzyme. A P2-site single amino acid substitution was responsible for the species-specificity. Estimation of the activity of the predicted ancestral enzymes towards various types of cleavage sites along with prediction of the evolutionary timing of substitutions allowed prediction of a possible evolutionary pathway, as follows: ancestral hatching enzyme, which had relatively strict substrate specificity, developed broader specificity as a result of four amino acid substitutions in the active site cleft of the enzyme. Subsequently, a single substitution occurred within the cleavage site of the substrate, and the recent feature of species-specificity was established in the hatching enzyme-egg envelope system. CONCLUSIONS: The present study clearly provides an ideal model for protease-substrate co-evolution. The evolutionary process giving rise to species-specific egg envelope digestion of hatching enzyme was initiated by amino acid substitutions in the enzyme, resulting in altered substrate specificity, which later allowed an amino acid substitution in the substrate.


Subject(s)
Egg Proteins/genetics , Egg Proteins/metabolism , Evolution, Molecular , Fundulidae/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Oryzias/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Egg Proteins/chemistry , Fundulidae/genetics , Metalloendopeptidases/chemistry , Models, Molecular , Molecular Sequence Data , Oryzias/genetics , Ovum/metabolism , Phylogeny , Sequence Alignment , Species Specificity , Substrate Specificity
17.
J Exp Zool B Mol Dev Evol ; 320(3): 140-50, 2013 May.
Article in English | MEDLINE | ID: mdl-23554322

ABSTRACT

Gene duplication is the primary source of novel genes, and is followed by non-, sub-, or neo-functionalization. In this study, we compared the egg envelope digestion mechanism of hatching enzymes between three-spined stickleback and nine-spined stickleback species, and found that the function of the hatching enzymes of nine-spined sticklebacks was uniquely derived by gene duplication, followed by sub-functionalization. The hatching enzyme of euteleosts consists of two metalloproteases, high choriolytic enzyme (HCE), and low choriolytic enzyme (LCE). LCE, especially, has an important role in solubilizing egg envelope protein by cleaving two specific sites. Three-spined stickleback had a single copy of the LCE gene, like other euteleosts. However, nine-spined stickleback had two types of LCE genes, α-type and ß-type, suggesting that a duplication of the LCE gene occurred during the evolution of sticklebacks. The α-type and ß-type each cleaved one of the two sites. Therefore, in the nine-spined stickleback, the function of the ancestral LCE was driven by a single copy gene, which was partitioned into two functions separately driven by two duplicated genes, and egg envelope was solubilized by the cooperative action of the two LCEs, α-type and ß-type. Herein, we provide a molecular mechanism for an evolutionary adaptation driven by gene duplication and sub-functionalization.


Subject(s)
Adaptation, Biological/genetics , Evolution, Molecular , Genes, Duplicate/genetics , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Smegmamorpha/genetics , Amino Acid Sequence , Animals , Base Sequence , Genomic Library , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Ovum/metabolism , Phylogeny , Sequence Alignment , Species Specificity
18.
J Exp Zool B Mol Dev Evol ; 320(5): 332-43, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23640864

ABSTRACT

Fish egg envelopes consist of several glycoproteins, called zona pellucida (ZP) proteins, which are conserved among chordates. Euteleosts synthesize ZP proteins in the liver, while elopomorphs synthesize them in the ovaries. In Cypriniformes, zp genes are expressed in the ovaries. We investigated the zp genes of two Otocephalan orders: Clupeiformes (Pacific herring and Japanese anchovy) and Gonorynchiformes (milkfish), which diverged earlier than Cypriniformes. cDNA cloning of zp gene homologs revealed that Pacific herring and Japanese anchovy possessed both ovary- and liver-expressed zp genes; however, the zp genes of milkfish were only expressed in the ovaries. Molecular phylogenetic analysis showed that ovary- and liver-expressed zpc genes of two the Clupeiformes formed independent clades. Based on this, we hypothesized the evolution of teleostean zp genes, focusing on the organ expressing zp gene. As in other chordates, the original site of expression of zp genes was likely the ovary. In the early stage of teleostean evolution, the ancestral zp genes acquired the ability to express in the liver. Later, one of the two expression sites became dominant. The liver-expressed zp genes are component proteins of the egg envelope in the Euteleostei. In Otocephala, Clupeiformes possess both ovary- and liver-expressed genes that presumably participate in egg envelope formation, whereas the Gonorynchiformes and Cypriniformes have primarily preserved ovary expressed zp genes.


Subject(s)
Biological Evolution , Cypriniformes/genetics , Phylogeny , Zona Pellucida/metabolism , Amino Acid Sequence , Animals , Gene Expression , Liver/chemistry , Liver/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Ovum/chemistry , Ovum/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zona Pellucida/chemistry
19.
J Exp Biol ; 216(Pt 9): 1609-15, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23348940

ABSTRACT

Embryos of medaka Oryzias latipes hatch in freshwater, while those of killifish Fundulus heteroclitus hatch in brackish water. Medaka and Fundulus possess two kinds of hatching enzymes, high choriolytic enzyme (HCE) and low choriolytic enzyme (LCE), which cooperatively digest their egg envelope at the time of hatching. Optimal salinity of medaka HCE was found in 0 mol l(-1) NaCl, and activity decreased with increasing salt concentrations. One of the two Fundulus HCEs, FHCE1, showed the highest activity in 0 mol l(-1) NaCl, and the other, FHCE2, showed the highest activity in 0.125 mol l(-1) NaCl. The results suggest that the salt dependencies of HCEs are well adapted to each salinity at the time of hatching. Different from HCE, LCEs of both species maintained the activity sufficient for egg envelope digestion in various salinities. The difference in amino acid sequence between FHCE1 and FHCE2 was found at only a single site at position 36 (Gly/Arg), suggesting that this single substitution causes the different salt dependency between the two enzymes. Superimposition of FHCE1 and FHCE2 with the 3-D structure model of medaka HCE revealed that position 36 was located on the surface of HCE molecule, far from its active site cleft. The results suggest a hypothesis that position 36 influences salt-dependent activity of HCE, not with recognition of primary structure around the cleavage site, but with recognition of higher ordered structure of egg envelope protein.


Subject(s)
Adaptation, Physiological/drug effects , Amino Acid Substitution/genetics , Evolution, Molecular , Fundulidae/metabolism , Metalloendopeptidases/genetics , Oryzias/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/genetics , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/enzymology , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Models, Molecular , Molecular Sequence Data , Ovum/drug effects , Ovum/metabolism , Peptides/metabolism , Salinity , Solubility , Substrate Specificity/drug effects
20.
Neuroreport ; 34(5): 299-307, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36881754

ABSTRACT

OBJECTIVES: Melatonin (MEL) has been reported to enhance cognitive performance. Recently, we have demonstrated that a MEL metabolite N-acetyl-5-methoxykynuramine (AMK) promoted the formation of long-term object recognition memory more potently than MEL. Here, we examined the effects of 1 mg/kg MEL and AMK on both object location memory and spatial working memory. We also investigated the effects of the same dose of these drugs on relative phosphorylation/activation levels of memory-related proteins in the hippocampus (HP), the perirhinal cortex (PRC) and the medial prefrontal cortex (mPFC). METHODS: Object location memory and spatial working memory were assessed using the object location task and the Y-maze spontaneous alternation task, respectively. Relative phosphorylation/activation levels of memory-related proteins were assessed using western blot analysis. RESULTS: AMK, as well as MEL, enhanced object location memory and spatial working memory. AMK increased the phosphorylation of cAMP-response element-binding protein (CREB) in both the HP and the mPFC 2 h after the treatment. AMK also increased the phosphorylation of extracellular signal-regulated kinases (ERKs) but decreased that of Ca2+/calmodulin-dependent protein kinases II (CaMKIIs) in the PRC and the mPFC 30 min after the treatment. MEL increased CREB phosphorylation in the HP 2 h after the treatment, whereas no detectable changes in the other proteins examined were observed. CONCLUSION: These results suggested the possibility that AMK exerts stronger memory-enhancing effects than MEL by more remarkably altering the activation of memory-related proteins such as ERKs, CaMKIIs and CREB in broader brain regions, including the HP, mPFC and PRC, compared to MEL.


Subject(s)
Melatonin , Memory, Short-Term , Phosphorylation , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Extracellular Signal-Regulated MAP Kinases , Memory, Long-Term , Cyclic AMP Response Element-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL