Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004147

ABSTRACT

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Phosphatase 2/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Phosphorylation , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Substrate Specificity
2.
Mol Cell ; 81(10): 2183-2200.e13, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34019788

ABSTRACT

To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.


Subject(s)
Biocatalysis , Histones/metabolism , Oncogenes , Transcription, Genetic , p300-CBP Transcription Factors/metabolism , Acetylation , Cell Line , Chromatin/metabolism , Co-Repressor Proteins/metabolism , Conserved Sequence , Evolution, Molecular , Gene Regulatory Networks , Genome , Histone Deacetylases/metabolism , Humans , Kinetics , Methylation , Models, Biological , RNA Polymerase II/metabolism
3.
Proc Natl Acad Sci U S A ; 120(36): e2306414120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37643213

ABSTRACT

Targeted inhibitors of bromodomain and extraterminal (BET)-bromodomains and phosphatidylinositol-3-kinase (PI3K) signaling demonstrate potent but self-limited antilymphoma activity as single agents in the context of cellular Myelocytomatosis (cMYC) oncogene-dysregulation. However, combined PI3K and BET inhibition imparts synergistic anticancer activity with the potential for more sustained disease responses due to the mutual antagonism of compensatory epigenetic and signaling networks. Here, we describe the mechanistic and therapeutic validation of rationally designed dual PI3K/BET bromodomain inhibitors, built by linkage of established PI3K and BET inhibitor pharmacophores. The lead candidate demonstrates high selectivity, nanomolar range cellular potency, and compelling in vivo efficacy, including curative responses in the aggressive Eµ-Myc lymphoma model. These studies further support the therapeutic strategy of combined PI3K and BET inhibition and provide a potential step-change in approach to orthogonal MYC antagonism using optimized chimeric small-molecule technology.


Subject(s)
Lymphoma , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinase , Aggression , Epigenomics , Lymphoma/drug therapy , Phosphoinositide-3 Kinase Inhibitors
4.
Mol Cell ; 65(6): 965-973, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28306512

ABSTRACT

Necroptosis (programmed necrosis) occurs in response to TNF, Fas, or TRAIL, as well as certain TLR ligands, when caspase activity required for apoptosis is blocked. Necroptosis is typically considered a highly pro-inflammatory mode of cell death, due to release of intracellular "danger signals" that promote inflammation. However, because most pro-necroptotic stimuli are intrinsically highly pro-inflammatory-due to their ability to initiate the synthesis of numerous cytokines and chemokines-the inflammatory consequences of necroptosis are complex. Here, we suggest that necroptosis might have anti-inflammatory effects in certain settings, through curbing excessive TNF- or TLR-induced inflammatory cytokine production.


Subject(s)
Apoptosis , Inflammation Mediators/metabolism , Inflammation/pathology , Animals , Caspases/metabolism , Genotype , Humans , Inflammation/genetics , Inflammation/metabolism , Mice, Knockout , Necrosis , Phenotype , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
EMBO J ; 39(2): e103637, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31803974

ABSTRACT

Although adoptive T-cell therapy has shown remarkable clinical efficacy in haematological malignancies, its success in combating solid tumours has been limited. Here, we report that PTPN2 deletion in T cells enhances cancer immunosurveillance and the efficacy of adoptively transferred tumour-specific T cells. T-cell-specific PTPN2 deficiency prevented tumours forming in aged mice heterozygous for the tumour suppressor p53. Adoptive transfer of PTPN2-deficient CD8+ T cells markedly repressed tumour formation in mice bearing mammary tumours. Moreover, PTPN2 deletion in T cells expressing a chimeric antigen receptor (CAR) specific for the oncoprotein HER-2 increased the activation of the Src family kinase LCK and cytokine-induced STAT-5 signalling, thereby enhancing both CAR T-cell activation and homing to CXCL9/10-expressing tumours to eradicate HER-2+ mammary tumours in vivo. Our findings define PTPN2 as a target for bolstering T-cell-mediated anti-tumour immunity and CAR T-cell therapy against solid tumours.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/methods , Lymphocyte Activation/immunology , Neoplasms/therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 2/physiology , Receptor, ErbB-2/physiology , Receptors, Antigen, T-Cell/immunology , Adoptive Transfer , Animals , Antigen Presentation/immunology , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction
6.
Trends Immunol ; 42(12): 1128-1142, 2021 12.
Article in English | MEDLINE | ID: mdl-34750058

ABSTRACT

Tumor necrosis factor (TNF) is a proinflammatory cytokine that is produced and secreted by cytotoxic lymphocytes upon tumor target recognition. Depending on the context, TNF can mediate either pro-survival or pro-death signals. The potential cytotoxicity of T cell-produced TNF, particularly in the context of T cell-directed immunotherapies, has been largely overlooked. However, a spate of recent studies investigating tumor immune evasion through the application of CRISPR-based gene-editing screens have highlighted TNF-mediated killing as an important component of the mammalian T cell antitumor repertoire. In the context of the current understanding of the role of TNF in antitumor immunity, we discuss these studies and touch on their therapeutic implications. Collectively, we provide an enticing prospect to augment immunotherapy responses through TNF cytotoxicity.


Subject(s)
Immunotherapy , Neoplasms , Animals , Cytotoxicity, Immunologic , Humans , Immunotherapy/methods , Mammals , Neoplasms/therapy , T-Lymphocytes , Tumor Escape , Tumor Necrosis Factors
7.
EMBO Rep ; 22(11): e53391, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34467615

ABSTRACT

The success of cancer immunotherapy is limited to a subset of patients, highlighting the need to identify the processes by which tumors evade immunity. Using CRISPR/Cas9 screening, we reveal that melanoma cells lacking HOIP, the catalytic subunit of LUBAC, are highly susceptible to both NK and CD8+ T-cell-mediated killing. We demonstrate that HOIP-deficient tumor cells exhibit increased sensitivity to the combined effect of the inflammatory cytokines, TNF and IFN-γ, released by NK and CD8+ T cells upon target recognition. Both genetic deletion and pharmacological inhibition of HOIP augment tumor cell sensitivity to combined TNF and IFN-γ. Together, we unveil a protective regulatory axis, involving HOIP, which limits a transcription-dependent form of cell death that engages both intrinsic and extrinsic apoptotic machinery upon exposure to TNF and IFN-γ. Our findings highlight HOIP inhibition as a potential strategy to harness and enhance the killing capacity of TNF and IFN-γ during immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Ubiquitin-Protein Ligases , Apoptosis/genetics , Humans , Interferon-gamma/pharmacology , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Protein Ligases/metabolism
8.
Genes Dev ; 29(21): 2231-43, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26494712

ABSTRACT

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Polycomb-Group Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Proliferation/genetics , Cells, Cultured , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins/genetics , E2F Transcription Factors/metabolism , Humans , Mice , Polycomb-Group Proteins/genetics , Protein Binding , Protein Stability , Protein Structure, Tertiary/genetics
9.
J Immunol ; 204(8): 2308-2315, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32152070

ABSTRACT

CRISPR/Cas9 technologies have revolutionized our understanding of gene function in complex biological settings, including T cell immunology. Current CRISPR-mediated gene editing strategies in T cells require in vitro stimulation or culture that can both preclude the study of unmanipulated naive T cells and alter subsequent differentiation. In this study, we demonstrate highly efficient gene editing within uncultured primary naive murine CD8+ T cells by electroporation of recombinant Cas9/sgRNA ribonucleoprotein immediately prior to in vivo adoptive transfer. Using this approach, we generated single and double gene knockout cells within multiple mouse infection models. Strikingly, gene deletion occurred even when the transferred cells were left in a naive state, suggesting that gene deletion occurs independent of T cell activation. Finally, we demonstrate that targeted mutations can be introduced into naive CD8+ T cells using CRISPR-based homology-directed repair. This protocol thus expands CRISPR-based gene editing approaches beyond models of robust T cell activation to encompass both naive T cell homeostasis and models of weak activation, such as tolerance and tumor models.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Animals , CRISPR-Cas Systems/immunology , Clustered Regularly Interspaced Short Palindromic Repeats/immunology , Electroporation , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology
10.
Mol Cell ; 49(6): 1034-48, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23434371

ABSTRACT

Apoptosis is commonly thought to represent an immunologically silent or even anti-inflammatory mode of cell death, resulting in cell clearance in the absence of explicit activation of the immune system. However, here we show that Fas/CD95-induced apoptosis is associated with the production of an array of cytokines and chemokines, including IL-6, IL-8, CXCL1, MCP-1, and GMCSF. Fas-induced production of MCP-1 and IL-8 promoted chemotaxis of phagocytes toward apoptotic cells, suggesting that these factors serve as "find-me" signals in this context. We also show that RIPK1 and IAPs are required for optimal production of cytokines and chemokines in response to Fas receptor stimulation. Consequently, a synthetic IAP antagonist potently suppressed Fas-dependent expression of multiple proinflammatory mediators and inhibited Fas-induced chemotaxis. Thus, in addition to provoking apoptosis, Fas receptor stimulation can trigger the secretion of chemotactic factors and other immunologically active proteins that can influence immune responsiveness toward dying cells.


Subject(s)
Apoptosis , Chemokine CCL2/physiology , Interleukin-8/physiology , fas Receptor/physiology , Animals , Caspase 8/metabolism , Chemokine CCL2/metabolism , Chemokines/metabolism , Chemokines/physiology , Chemotaxis , Gene Expression Regulation , HeLa Cells , Humans , Inflammation Mediators/metabolism , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Interleukin-8/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Phagocytes/physiology , Protein Binding , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction , fas Receptor/metabolism
11.
Eur J Immunol ; 49(5): 770-781, 2019 05.
Article in English | MEDLINE | ID: mdl-30729501

ABSTRACT

Mutation of Dedicator of cytokinesis 8 (DOCK8) has previously been reported to provide resistance to the Th17 cell dependent EAE in mice. Contrary to expectation, we observed an elevation of Th17 cells in two different DOCK8 mutant mouse strains in the steady state. This was specific for Th17 cells with no change in Th1 or Th2 cell populations. In vitro Th cell differentiation assays revealed that the elevated Th17 cell population was not due to a T cell intrinsic differentiation bias. Challenging these mutant mice in the EAE model, we confirmed a resistance to this autoimmune disease with Th17 cells remaining elevated systemically while cellular infiltration in the CNS was reduced. Infiltrating T cells lost the bias toward Th17 cells indicating a relative reduction of Th17 cells in the CNS and a Th17 cell specific migration disadvantage. Adoptive transfers of Th1 and Th17 cells in EAE-affected mice further supported the Th17 cell-specific migration defect, however, DOCK8-deficient Th17 cells expressed normal Th17 cell-specific CCR6 levels and migrated toward chemokine gradients in transwell assays. This study shows that resistance to EAE in DOCK8 mutant mice is achieved despite a systemic Th17 bias.


Subject(s)
Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/etiology , Guanine Nucleotide Exchange Factors/genetics , Lymphocyte Count , Mutation , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Biomarkers , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression , Genetic Predisposition to Disease , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
12.
J Immunol ; 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28794229

ABSTRACT

Mutations in the dedicator of cytokinesis 8 (DOCK8) gene cause an autosomal recessive form of hyper-IgE syndrome, characterized by chronic immunodeficiency with persistent microbial infection and increased incidence of malignancy. These manifestations suggest a defect in cytotoxic lymphocyte function and immune surveillance. However, how DOCK8 regulates NK cell-driven immune responses remains unclear. In this article, we demonstrate that DOCK8 regulates NK cell cytotoxicity and cytokine production in response to target cell engagement or receptor ligation. Genetic ablation of DOCK8 in human NK cells attenuated cytokine transcription and secretion through inhibition of Src family kinase activation, particularly Lck, downstream of target cell engagement or NKp30 ligation. PMA/Ionomycin treatment of DOCK8-deficient NK cells rescued cytokine production, indicating a defect proximal to receptor ligation. Importantly, NK cells from DOCK8-deficient patients had attenuated production of IFN-γ and TNF-α upon NKp30 stimulation. Taken together, we reveal a novel molecular mechanism by which DOCK8 regulates NK cell-driven immunity.

13.
Crit Rev Immunol ; 35(4): 325-47, 2015.
Article in English | MEDLINE | ID: mdl-26757394

ABSTRACT

A synapse is a specialized structure that forms when the plasma membrane of two cells come into close contact to facilitate communication and signaling. Cells of the immune system form 'immunological' synapses that have an ordered structure and are essential for immune cell activation, function and homeostasis. Optimal synapse formation is not only critical for the generation of effective immunity against pathogens but is also essential for immune surveillance against cancer and for the prevention of immune disorders. Not surprisingly, defective synapse formation can therefore have severe consequences for human health, culminating in poor immune function leading to immunodeficiency disease or failure to detect and control infected or cancerous cells. Here, we discuss the immunological synapse formed by cytotoxic lymphocytes in both immunodeficiency diseases and anticancer immunity and touch on novel therapies that may alter or enhance synapse formation.


Subject(s)
Immunologic Deficiency Syndromes/immunology , Immunological Synapses/metabolism , Immunotherapy , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, Neoplasm/immunology , Homeostasis , Humans , Immunity, Cellular , Immunologic Deficiency Syndromes/therapy , Immunologic Surveillance , Neoplasms/therapy
14.
J Biol Chem ; 288(7): 4878-90, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23275336

ABSTRACT

Inhibitor of apoptosis proteins (IAPs) play a major role in determining whether cells undergo apoptosis in response to TNF as well as other stimuli. However, TNF is also highly proinflammatory through its ability to trigger the secretion of multiple inflammatory cytokines and chemokines, which is arguably the most important role of TNF in vivo. Indeed, deregulated production of TNF-induced cytokines is a major driver of inflammation in several autoimmune conditions such as rheumatoid arthritis. Here, we show that IAPs are required for the production of multiple TNF-induced proinflammatory mediators. Ablation or antagonism of IAPs potently suppressed TNF- or RIPK1-induced proinflammatory cytokine and chemokine production. Surprisingly, IAP antagonism also led to spontaneous production of chemokines, particularly RANTES, in vitro and in vivo. Thus, IAPs play a major role in influencing the production of multiple inflammatory mediators, arguing that these proteins are important regulators of inflammation in addition to apoptosis. Furthermore, small molecule IAP antagonists can modulate spontaneous as well as TNF-induced inflammatory responses, which may have implications for use of these agents in therapeutic settings.


Subject(s)
Chemokines/metabolism , Cytokines/metabolism , Gene Expression Regulation , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Apoptosis , Female , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Inflammation , Ligands , Mice , Mice, Inbred C57BL , Models, Biological , RNA Interference , Receptors, Tumor Necrosis Factor/metabolism
15.
Biol Chem ; 395(10): 1163-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25153241

ABSTRACT

Microbial infection and tissue injury are well established as the two major drivers of inflammation. However, although it is widely accepted that necrotic cell death can trigger or potentiate inflammation, precisely how this is achieved still remains relatively obscure. Certain molecules, which have been dubbed 'damage-associated molecular patterns' (DAMPs) or alarmins, are thought to promote inflammation upon release from necrotic cells. However, the precise nature and relative potency of DAMPs, compared to conventional pro-inflammatory cytokines or pathogen-associated molecular patterns (PAMPs), remains unclear. How different modes of cell death impact on the immune system also requires further clarification. Apoptosis has long been regarded as a non-inflammatory or even anti-inflammatory mode of cell death, but recent studies suggest that this is not always the case. Necroptosis is a programmed form of necrosis that is engaged under certain conditions when caspase activation is blocked. Necroptosis is also regarded as a highly pro-inflammatory mode of cell death but there has been little explicit examination of this issue. Here we discuss the inflammatory implications of necrosis, necroptosis and apoptosis and some of the unresolved questions concerning how dead cells influence inflammatory responses.


Subject(s)
Apoptosis/physiology , Inflammation/pathology , Inflammation/physiopathology , Necrosis/pathology , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/physiology , Cell Death/physiology , Humans , Inflammation/genetics , Ligands , Necrosis/genetics , Signal Transduction
16.
FEBS J ; 291(7): 1386-1399, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37971319

ABSTRACT

Despite the clinical success of cancer immunotherapies including immune checkpoint blockade and adoptive cellular therapies across a variety of cancer types, many patients do not respond or ultimately relapse; however, the molecular underpinnings of this are not fully understood. Thus, a system-level understating of the routes to tumor immune evasion is required to inform the design of the next generation of immunotherapy approaches. CRISPR screening approaches have proved extremely powerful in identifying genes that promote tumor immune evasion or sensitize tumor cells to destruction by the immune system. These large-scale efforts have brought to light decades worth of fundamental immunology and have uncovered the key immune-evasion pathways subverted in cancers in an acquired manner in patients receiving immune-modulatory therapies. The comprehensive discovery of the main pathways involved in immune evasion has spurred the development and application of novel immune therapies to target this process. Although successful, conventional CRISPR screening approaches are hampered by a number of limitations, which obfuscate a complete understanding of the precise molecular regulation of immune evasion in cancer. Here, we provide a perspective on screening approaches to interrogate tumor-lymphocyte interactions and their limitations, and discuss further development of technologies to improve such approaches and discovery capability.


Subject(s)
Neoplasms , Tumor Escape , Humans , Tumor Escape/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy , Forecasting
17.
Cell Rep ; 43(3): 113831, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38401121

ABSTRACT

Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Humans , CD8-Positive T-Lymphocytes/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Histocompatibility Antigens Class I/genetics , Immunity, Cellular , Interferon-gamma/metabolism , Melanoma/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism
18.
Cell Rep ; 42(8): 113014, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37605534

ABSTRACT

CXCL9 expression is a strong predictor of response to immune checkpoint blockade therapy. Accordingly, we sought to develop therapeutic strategies to enhance the expression of CXCL9 and augment antitumor immunity. To perform whole-genome CRISPR-Cas9 screening for regulators of CXCL9 expression, a CXCL9-GFP reporter line is generated using a CRISPR knockin strategy. This approach finds that IRF1 limits CXCL9 expression in both tumor cells and primary myeloid cells through induction of SOCS1, which subsequently limits STAT1 signaling. Thus, we identify a subset of STAT1-dependent genes that do not require IRF1 for their transcription, including CXCL9. Targeting of either IRF1 or SOCS1 potently enhances CXCL9 expression by intratumoral macrophages, which is further enhanced in the context of immune checkpoint blockade therapy. We hence show a non-canonical role for IRF1 in limiting the expression of a subset of STAT1-dependent genes through induction of SOCS1.


Subject(s)
CRISPR-Cas Systems , Immune Checkpoint Inhibitors , Feedback , Suppressor of Cytokine Signaling Proteins/genetics , Signal Transduction
19.
Front Immunol ; 13: 931630, 2022.
Article in English | MEDLINE | ID: mdl-35874669

ABSTRACT

Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in Nkg7+/+ and Nkg7-/- littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity. Mechanistically, we found that deletion of NKG7 reduces the ability of CD8+ T cells to degranulate and kill target cells in vitro. However, as a result of inefficient cytotoxic activity, NKG7 deficient T cells form a prolonged immune synapse with tumor cells, resulting in increased secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF). By deleting the TNF receptor, TNFR1, from MC38-OVA tumors, we demonstrate that this hyper-secretion of TNF compensates for reduced synapse-mediated cytotoxic activity against MC38-OVA tumors in vivo, via increased TNF-mediated tumor cell death. Taken together, our results demonstrate that NKG7 enhances CD8+ T cell immune synapse efficiency, which may serve as a mechanism to accelerate direct cytotoxicity and limit potentially harmful inflammatory responses.


Subject(s)
CD8-Positive T-Lymphocytes , Immunological Synapses , Membrane Proteins , Neoplasms , Animals , Immunotherapy/methods , Inflammation/metabolism , Membrane Proteins/metabolism , Mice , Neoplasms/therapy , Tumor Necrosis Factor-alpha/metabolism
20.
Clin Epigenetics ; 14(1): 96, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902886

ABSTRACT

BACKGROUND: Interferon gamma (IFNγ) is a pro-inflammatory cytokine that directly activates the JAK/STAT pathway. However, the temporal dynamics of chromatin remodeling and transcriptional activation initiated by IFNγ have not been systematically profiled in an unbiased manner. Herein, we integrated transcriptomic and epigenomic profiling to characterize the acute epigenetic changes induced by IFNγ stimulation in a murine breast cancer model. RESULTS: We identified de novo activation of cis-regulatory elements bound by Irf1 that were characterized by increased chromatin accessibility, differential usage of pro-inflammatory enhancers, and downstream recruitment of BET proteins and RNA polymerase II. To functionally validate this hierarchical model of IFNγ-driven transcription, we applied selective antagonists of histone acetyltransferases P300/CBP or acetyl-lysine readers of the BET family. This highlighted that histone acetylation is an antecedent event in IFNγ-driven transcription, whereby targeting of P300/CBP acetyltransferase activity but not BET inhibition could curtail the epigenetic remodeling induced by IFNγ through suppression of Irf1 transactivation. CONCLUSIONS: These data highlight the ability for epigenetic therapies to reprogram pro-inflammatory gene expression, which may have therapeutic implications for anti-tumor immunity and inflammatory diseases.


Subject(s)
Breast Neoplasms , Interferon-gamma , Acetylation , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , DNA Methylation , E1A-Associated p300 Protein , Female , Interferon-gamma/pharmacology , Janus Kinases , Membrane Proteins , Mice , Phosphoproteins , STAT Transcription Factors , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL