Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
2.
PLoS Genet ; 17(7): e1009679, 2021 07.
Article in English | MEDLINE | ID: mdl-34324492

ABSTRACT

Numerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-offspring trios. Our analysis revealed 21 genes which were significantly affected by rare CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in small cases series or show new associations with CHD. In addition, a systems level analysis revealed affected protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes and pathways.


Subject(s)
DNA Copy Number Variations/genetics , Haploinsufficiency/genetics , Heart Defects, Congenital/genetics , Databases, Genetic , Gene Expression/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genomics/methods , Humans , Ion Channels/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Transcriptome/genetics
3.
Hum Mol Genet ; 30(6): 500-513, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33437986

ABSTRACT

Signalling lipids of the N-acyl ethanolamine (NAE) and ceramide (CER) classes have emerged as potential biomarkers of cardiovascular disease (CVD). We sought to establish the heritability of plasma NAEs (including the endocannabinoid anandamide) and CERs, to identify common DNA variants influencing the circulating concentrations of the heritable lipids, and assess causality of these lipids in CVD using 2-sample Mendelian randomization (2SMR). Nine NAEs and 16 CERs were analyzed in plasma samples from 999 members of 196 British Caucasian families, using targeted ultra-performance liquid chromatography with tandem mass spectrometry. All lipids were significantly heritable (h2 = 36-62%). A missense variant (rs324420) in the gene encoding the enzyme fatty acid amide hydrolase (FAAH), which degrades NAEs, associated at genome-wide association study (GWAS) significance (P < 5 × 10-8) with four NAEs (DHEA, PEA, LEA and VEA). For CERs, rs680379 in the SPTLC3 gene, which encodes a subunit of the rate-limiting enzyme in CER biosynthesis, associated with a range of species (e.g. CER[N(24)S(19)]; P = 4.82 × 10-27). We observed three novel associations between SNPs at the CD83, SGPP1 and DEGS1 loci, and plasma CER traits (P < 5 × 10-8). 2SMR in the CARDIoGRAMplusC4D cohorts (60 801 cases; 123 504 controls) and in the DIAGRAM cohort (26 488 cases; 83 964 controls), using the genetic instruments from our family-based GWAS, did not reveal association between genetically determined differences in CER levels and CVD or diabetes. Two of the novel GWAS loci, SGPP1 and DEGS1, suggested a casual association between CERs and a range of haematological phenotypes, through 2SMR in the UK Biobank, INTERVAL and UKBiLEVE cohorts (n = 110 000-350 000).


Subject(s)
Biomarkers/blood , Cardiovascular Diseases/blood , Ceramides/blood , Ethanolamines/blood , Genetic Predisposition to Disease , Lipidomics/methods , Polymorphism, Single Nucleotide , Cardiovascular Diseases/genetics , Cardiovascular Diseases/pathology , Case-Control Studies , Ceramides/genetics , Female , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Middle Aged
4.
J Hum Genet ; 67(2): 123-125, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34493817

ABSTRACT

Congenital heart disease (CHD) has a complex and largely uncharacterised genetic etiology. Using 200,000 UK Biobank (UKB) exomes, we assess the burden of ultra-rare, potentially pathogenic variants in the largest case/control cohort of predominantly mild CHD to date. We find an association with GATA6, a member of the GATA family of transcription factors that play an important role during heart development and has been linked with several CHD phenotypes previously. Several identified GATA6 variants are previously unreported and their roles in conferring risk to CHD warrants further study. We demonstrate that despite limitations regarding detailed familial phenotype information in large-scale biobank projects, through careful consideration of case and control cohorts it is possible to derive important associations.


Subject(s)
Biological Specimen Banks/statistics & numerical data , Exome Sequencing/methods , GATA6 Transcription Factor/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Heart Defects, Congenital/genetics , Case-Control Studies , Cohort Studies , Genome-Wide Association Study/methods , Genome-Wide Association Study/statistics & numerical data , Heart Defects, Congenital/diagnosis , Humans , Odds Ratio , Phenotype , Risk Factors , United Kingdom
5.
J Hum Genet ; 67(10): 613-615, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35718831

ABSTRACT

Although several genes involved in the development of Tetralogy of Fallot have been identified, no genetic diagnosis is available for the majority of patients. Low statistical power may have prevented the identification of further causative genes in gene-by-gene survey analyses. Thus, bigger samples and/or novel analytic approaches may be necessary. We studied if a joint analysis of groups of functionally related genes might be a useful alternative approach. Our reanalysis of whole-exome sequencing data identified 12 groups of genes that exceedingly contribute to the burden of Tetralogy of Fallot. Further analysis of those groups showed that genes with high-impact variants tend to interact with each other. Thus, our results strongly suggest that additional candidate genes may be found by studying the protein interaction network of known causative genes. Moreover, our results show that the joint analysis of functionally related genes can be a useful complementary approach to classical single-gene analyses.


Subject(s)
Tetralogy of Fallot , Genetic Testing , Humans , Tetralogy of Fallot/diagnosis , Tetralogy of Fallot/genetics , Exome Sequencing
6.
Prostaglandins Other Lipid Mediat ; 160: 106638, 2022 06.
Article in English | MEDLINE | ID: mdl-35472599

ABSTRACT

Estimates of heritability are the first step in identifying a trait with substantial variation due to genetic factors. Large-scale genetic analyses can identify the DNA variants that influence the levels of circulating lipid species and the statistical technique Mendelian randomisation can use these DNA variants to address potential causality of these lipids in disease. We estimated the heritability of plasma eicosanoids, octadecanoids and docosanoids to identify those lipid species with substantial heritability. We analysed plasma lipid mediators in 31 White British families (196 participants) ascertained for high blood pressure and deeply clinically and biochemically phenotyped over a 25-year period. We found that the dihydroxyeicosatrienoic acid (DHET) species, 11,12-DHET and 14,15-DHET, products of arachidonic acid metabolism by cytochrome P450 (CYP) monooxygenase and soluble epoxide hydrolase (sEH), exhibited substantial heritability (h2 = 33%-37%; Padj<0.05). Identification of these two heritable bioactive lipid species allows for future large-scale, targeted, lipidomics-genomics analyses to address causality in cardiovascular and other diseases.


Subject(s)
Eicosanoids , Epoxide Hydrolases , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids/blood , Eicosanoids/metabolism , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Humans , Lipidomics , Phenotype
7.
Bioinformatics ; 36(7): 2217-2223, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31790148

ABSTRACT

MOTIVATION: Data-independent acquisition mass spectrometry allows for comprehensive peptide detection and relative quantification than standard data-dependent approaches. While less prone to missing values, these still exist. Current approaches for handling the so-called missingness have challenges. We hypothesized that non-random missingness is a useful biological measure and demonstrate the importance of analysing missingness for proteomic discovery within a longitudinal study of disease activity. RESULTS: The magnitude of missingness did not correlate with mean peptide concentration. The magnitude of missingness for each protein strongly correlated between collection time points (baseline, 3 months, 6 months; R = 0.95-0.97, confidence interval = 0.94-0.97) indicating little time-dependent effect. This allowed for the identification of proteins with outlier levels of missingness that differentiate between the patient groups characterized by different patterns of disease activity. The association of these proteins with disease activity was confirmed by machine learning techniques. Our novel approach complements analyses on complete observations and other missing value strategies in biomarker prediction of disease activity. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteomics , Humans , Longitudinal Studies , Mass Spectrometry
8.
Genet Med ; 23(10): 1952-1960, 2021 10.
Article in English | MEDLINE | ID: mdl-34113005

ABSTRACT

PURPOSE: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. METHODS: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. RESULTS: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). CONCLUSION: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


Subject(s)
Tetralogy of Fallot , Vascular Endothelial Growth Factor Receptor-2 , Animals , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice , Tetralogy of Fallot/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Exome Sequencing
9.
Circ Res ; 124(4): 553-563, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30582441

ABSTRACT

RATIONALE: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. OBJECTIVE: We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. METHODS AND RESULTS: Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%-6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%-3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. CONCLUSIONS: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.


Subject(s)
Exome , Mutation Rate , Tetralogy of Fallot/genetics , Autoantigens/genetics , Calcium-Binding Proteins/genetics , Cell Cycle Proteins/genetics , Homeodomain Proteins/genetics , Humans , Loss of Function Mutation , Mutation, Missense , Nuclear Proteins/genetics , Receptor, Notch1/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Vascular Endothelial Growth Factor Receptor-3/genetics
10.
BMC Cardiovasc Disord ; 20(1): 488, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33213369

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) is the commonest birth defect. Studies estimating the prevalence of CHD in school-age children could therefore contribute to quantifying unmet health needs for diagnosis and treatment, particularly in lower-income countries. Data at school age are considerably sparser, and individual studies have generally been of small size. We conducted a literature-based meta-analysis to investigate global trends over a 40-year period. METHODS AND RESULTS: Studies reporting on CHD prevalence in school-age children (4-18 years old) from 1970 to 2017 were identified from PubMed, EMBASE, Web of Science and Google Scholar. According to the inclusion criteria, 42 studies including 2,638,475 children, reporting the prevalence of unrepaired CHDs (both pre-school diagnoses and first-time school-age diagnoses), and nine studies including 395,571 children, specifically reporting the prevalence of CHD first diagnosed at school ages, were included. Data were combined using random-effects models. The prevalence of unrepaired CHD in school children during the entire period of study was 3.809 (95% confidence intervals 3.075-4.621)/1000. A lower proportion of male than female school children had unrepaired CHD (OR = 0.84 [95% CI 0.74-0.95]; p = 0.001). Between 1970-1974 and 1995-1999, there was no significant change in the prevalence of unrepaired CHD at school age; subsequently there was an approximately 2.5-fold increase from 1.985 (95% CI 1.074-3.173)/1000 in 1995-1999 to 4.832 (95% CI 3.425-6.480)/1000 in 2010-2014, (p = 0.009). Among all CHD conditions, atrial septal defects and ventricular septal defects chiefly accounted for this increasing trend. The summarised prevalence (1970-2017) of CHD diagnoses first made in childhood was 1.384 (0.955, 1.891)/1000; during this time there was a fall from 2.050 [1.362, 2.877]/1000 pre-1995 to 0.848 [0.626, 1.104]/1000 in 1995-2014 (p = 0.04). CONCLUSIONS: Globally, these data show an increased prevalence of CHD (mainly mild CHD conditions) recognised at birth/infancy or early childhood, but remaining unrepaired at school-age. In parallel there has been a decrease of first-time CHD diagnoses in school-age children. These together imply a favourable shift of CHD recognition time to earlier in the life course. Despite this, substantial inequalities between higher and lower income countries remain. Increased healthcare resources for people born with CHD, particularly in poorer countries, are required.


Subject(s)
Global Health/trends , Heart Defects, Congenital/epidemiology , Adolescent , Age Distribution , Child , Child, Preschool , Early Diagnosis , Female , Healthcare Disparities/trends , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/therapy , Humans , Male , Prevalence , Time Factors
11.
Hum Mol Genet ; 25(11): 2331-2341, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26965164

ABSTRACT

Congenital heart defects involving left-sided lesions (LSLs) are relatively common birth defects with substantial morbidity and mortality. Previous studies have suggested a high heritability with a complex genetic architecture, such that only a few LSL loci have been identified. We performed a genome-wide case-control association study to address the role of common variants using a discovery cohort of 778 cases and 2756 controls. We identified a genome-wide significant association mapping to a 200 kb region on chromosome 20q11 [P= 1.72 × 10-8 for rs3746446; imputed Single Nucleotide Polymorphism (SNP) rs6088703 P= 3.01 × 10-9, odds ratio (OR)= 1.6 for both]. This result was supported by transmission disequilibrium analyses using a subset of 541 case families (lowest P in region= 4.51 × 10-5, OR= 1.5). Replication in a cohort of 367 LSL cases and 5159 controls showed nominal association (P= 0.03 for rs3746446) resulting in P= 9.49 × 10-9 for rs3746446 upon meta-analysis of the combined cohorts. In addition, a group of seven SNPs on chromosome 1q21.3 met threshold for suggestive association (lowest P= 9.35 × 10-7 for rs12045807). Both regions include genes involved in cardiac development-MYH7B/miR499A on chromosome 20 and CTSK, CTSS and ARNT on chromosome 1. Genome-wide heritability analysis using case-control genotyped SNPs suggested that the mean heritability of LSLs attributable to common variants is moderately high ([Formula: see text] range= 0.26-0.34) and consistent with previous assertions. These results provide evidence for the role of common variation in LSLs, proffer new genes as potential biological candidates, and give further insight to the complex genetic architecture of congenital heart disease.


Subject(s)
Chromosomes, Human, Pair 20/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Heart Defects, Congenital/genetics , Chromosome Mapping , Cohort Studies , Female , Genotype , Heart Defects, Congenital/physiopathology , Heart Ventricles/physiopathology , Humans , Male , Polymorphism, Single Nucleotide
12.
Am J Hum Genet ; 97(3): 419-34, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26320892

ABSTRACT

Parent-of-origin (or imprinting) effects relate to the situation in which traits are influenced by the allele inherited from only one parent and the allele from the other parent has little or no effect. Given SNP genotype data from case-parent trios, the parent of origin of each allele in the offspring can often be deduced unambiguously; however, this is not true when all three individuals are heterozygous. Most existing methods for investigating parent-of-origin effects operate on a SNP-by-SNP basis and either perform some sort of averaging over the possible parental transmissions or else discard ambiguous trios. If the correct parent of origin at a SNP could be determined, this would provide extra information and increase the power for detecting the effects of imprinting. We propose making use of the surrounding SNP information, via haplotype estimation, to improve estimation of parent of origin at a test SNP for case-parent trios, case-mother duos, and case-father duos. This extra information is then used in a multinomial modeling approach for estimating parent-of-origin effects at the test SNP. We show through computer simulations that our approach has increased power over previous approaches, particularly when the data consist only of duos. We apply our method to two real datasets and find a decrease in significance of p values in genomic regions previously thought to possibly harbor imprinting effects, thus weakening the evidence that such effects actually exist in these regions, although some regions retain evidence of significant effects.


Subject(s)
Genomic Imprinting/genetics , Haplotypes/genetics , Models, Genetic , Computer Simulation , Genotype , Humans , Likelihood Functions , Polymorphism, Single Nucleotide/genetics
15.
J Mol Cell Cardiol ; 85: 207-14, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26073630

ABSTRACT

Genome-wide association studies (GWAS) have identified genetic variants in a number of chromosomal regions that are associated with atrial fibrillation (AF). The mechanisms underlying these associations are unknown, but are likely to involve effects of the risk haplotypes on expression of neighbouring genes. To investigate the association between genetic variants at AF-associated loci and expression of nearby candidate genes in human atrial tissue and peripheral blood. Right atrial appendage (RAA) samples were collected from 122 patients undergoing cardiac surgery, of these, 12 patients also had left atrial appendage samples taken. 22 patients had a history of AF. Peripheral blood samples were collected from 405 patients undergoing diagnostic cardiac catheterisation. In order to tag genetic variation at each of nine loci, a total of 367 single nucleotide polymorphisms (SNPs) were genotyped using the Sequenom platform. Total expression of 16 candidate genes in the nine AF-associated regions was measured by quantitative PCR. The relative expression of each allele of the candidate genes was measured on the Sequenom platform using one or more transcribed SNPs to distinguish between alleles in heterozygotes. We tested association between the SNPs of interest and gene expression using total gene expression (integrating cis and trans acting sources of variation), and allelic expression ratios (specific for cis acting influences), in atrial tissue and peripheral blood. We adjusted for multiple comparisons using a Bonferroni approach. In subsidiary analyses, we compared the expression of candidate genes between patients with and without a history of AF. Total expression of 15 transcripts of 14 genes and allelic expression ratio of 14 transcripts of 14 genes in genomic regions associated with AF were measured in right atrial appendage tissue. 8 of these transcripts were also expressed in peripheral blood. Risk alleles at AF-associated SNPs were associated in cis with an increased expression of PITX2a (2.01-fold, p=6.5×10(-4)); and with decreased expression of MYOZ1 (0.39 fold; p=5.5×10(-15)), CAV1 (0.89 fold; p=5.9×10(-8)), C9orf3 (0.91 fold; 1.5×10(-5)), and FANCC (0.94-fold; p=8.9×10(-8)) in right atrial appendage. Of these five genes, only CAV1 was expressed in peripheral blood; association between the same AF risk alleles and lower expression of CAV1 was confirmed (0.91 fold decrease; p=4.2×10(-5)). A history of AF was also associated with a decrease in expression of CAV1 in both right and left atria (0.84 and 0.85 fold, respectively; p=0.03), congruent with the magnitude of the effect of the risk SNP on expression, and independent of genotype. The analyses in peripheral blood showed association between AF risk SNPs and decreased expression of KCNN3 (0.85-fold; p=2.1×10(-4)); and increased expression of SYNE2 (1.12-fold; p=7.5×10(-24)); however, these associations were not detectable in atrial tissue. We identified novel cis-acting associations in atrial tissue between AF risk SNPs and increased expression of PITX2a/b; and decreased expression of CAV1 (an association also seen in peripheral blood), C9orf3 and FANCC. We also confirmed a previously described association between AF risk variants and MYOZ1 expression. Analyses of peripheral blood illustrated tissue-specificity of cardiac eQTLs and highlight the need for larger-scale genome-wide eQTL studies in cardiac tissue. Our results suggest novel aetiological roles for genes in four AF-associated genomic regions.


Subject(s)
Aminopeptidases/metabolism , Atrial Fibrillation/genetics , Carrier Proteins/metabolism , Caveolin 1/metabolism , Fanconi Anemia Complementation Group C Protein/metabolism , Homeodomain Proteins/metabolism , Muscle Proteins/metabolism , Transcription Factors/metabolism , Aminopeptidases/genetics , Atrial Fibrillation/metabolism , Carrier Proteins/genetics , Caveolin 1/genetics , Fanconi Anemia Complementation Group C Protein/genetics , Gene Expression , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Heart Atria/metabolism , Homeodomain Proteins/genetics , Humans , Muscle Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Risk Factors , Transcription Factors/genetics , Homeobox Protein PITX2
16.
Hum Mol Genet ; 22(7): 1473-81, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23297363

ABSTRACT

We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10(-7)) and replicated convincingly (P = 3.9 × 10(-5)) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10(-11) in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10(-7)) and replicated convincingly (P = 1.2 × 10(-5)) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10(-11) in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TOF.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 13/genetics , Genome-Wide Association Study , Tetralogy of Fallot/genetics , Case-Control Studies , Female , Gene Frequency , Genetic Loci , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide
17.
Am J Hum Genet ; 91(5): 897-905, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23063620

ABSTRACT

Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed.


Subject(s)
Acrocephalosyndactylia/genetics , Genetic Association Studies , Membrane Proteins/genetics , Mutation , Acrocephalosyndactylia/diagnosis , Alleles , Animals , Animals, Genetically Modified , Child , Child, Preschool , Facies , Female , Genotype , Humans , Male , Membrane Proteins/chemistry , Zebrafish/genetics
18.
Am J Hum Genet ; 91(3): 489-501, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22939634

ABSTRACT

Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10(-5)). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ~5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ~4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.


Subject(s)
DNA Copy Number Variations , Gene Deletion , Heart Defects, Congenital/genetics , Child , Chromosomes, Human, Pair 15 , Chromosomes, Human, Pair 8 , Fathers , Female , Gene Dosage , Humans , Male , Polymorphism, Single Nucleotide
19.
Hum Mol Genet ; 21(7): 1513-20, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22199024

ABSTRACT

Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ~1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9-107.6); P = 2.2 × 10(-7)], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4-22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100-200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8-64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus.


Subject(s)
Chromosome Deletion , Chromosome Duplication , Chromosomes, Human, Pair 1 , Connexins/genetics , Heart Defects, Congenital/genetics , Tetralogy of Fallot/genetics , Gene Duplication , Humans , Phenotype , Gap Junction alpha-5 Protein
20.
BMC Genet ; 15: 136, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25539802

ABSTRACT

BACKGROUND: The ZFHX3 gene, located in Chromosome 16q22.3, codes for a transcription factor which is widely expressed in human tissues. Genome-wide studies have identified associations between variants within the gene and Kawasaki disease and atrial fibrillation. ZFHX3 has two main transcripts that utilise different transcription start sites. We examined the association between genetic variants in the 16q22.3 region and expression of ZFHX3 to identify variants that regulate gene expression. RESULTS: We genotyped 65 single-nucleotide polymorphisms to tag genetic variation at the ZFHX3 locus in two cohorts, 451 British individuals recruited in the North East of England and 310 mixed-ancestry individuals recruited in South Africa. Allelic expression analysis revealed that the minor (A) allele of rs8060701, a variant in the first intron of ZFHX3, was associated with a 1.16-fold decrease in allelic expression of both transcripts together, (p = 4.87e-06). The minor (C) allele of a transcribed variant, rs10852515, in the second exon of ZFHX3 isoform A was independently associated with a 1.36-fold decrease in allelic expression of ZFHX3 A (p = 7.06e-31), but not overall ZFHX3 expression. However, analysis of total gene expression of ZFHX3 failed to detect an association with genotype at any variant. Differences in linkage disequilibrium between the two populations allowed fine-mapping of the locus to a 7 kb region overlapping exon 2 of ZFHX3 A. We did not find any association between ZFHX3 expression and any of the variants identified by genome wide association studies. CONCLUSIONS: ZFHX3 transcription is regulated in a transcript-specific fashion by independent cis-acting transcribed polymorphisms. Our results demonstrate the power of allelic expression analysis and trans-ethnic fine mapping to identify transcript-specific cis-acting regulatory elements.


Subject(s)
Homeodomain Proteins/genetics , Transcription, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Atrial Fibrillation/genetics , Chromosomes, Human, Pair 16/genetics , Female , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Homeodomain Proteins/metabolism , Humans , Linkage Disequilibrium , Male , Middle Aged , Mucocutaneous Lymph Node Syndrome/genetics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Initiation Site , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL