ABSTRACT
Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding É-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.
Subject(s)
Centromere , Genetic Techniques , Humans , Aneuploidy , Centromere/genetics , Chromosome Deletion , Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic RepeatsABSTRACT
To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.
Subject(s)
Carcinoma, Renal Cell/genetics , Neoplasm Proteins/genetics , Proteogenomics , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Disease-Free Survival , Exome/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Humans , Male , Middle Aged , Neoplasm Proteins/immunology , Oxidative Phosphorylation , Phosphorylation/genetics , Signal Transduction/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Exome SequencingABSTRACT
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
Subject(s)
Cyclins , DNA Mismatch Repair , Animals , Cyclins/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Interphase , Mammals/metabolismABSTRACT
Cellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an â¼50 MDa assembly comprised of â¼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics. We discovered that, although all Nups display uniformly slow turnover, their exchange rates vary considerably. Surprisingly, this exchange rate was relatively unrelated to each Nup's position, accessibility, or role in transport but correlated with its structural role; scaffold-forming Nups exchange slowly, whereas flexible connector Nups threading throughout the NPC architecture exchange more rapidly. Targeted perturbations in the NPC structure revealed a dynamic resilience to damage. Our approach opens a new window into macromolecular assembly dynamics.
Subject(s)
Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/geneticsABSTRACT
D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer1, but the mechanisms that regulate their turnover are still being debated2,3. Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4AMBRA1 (also known as CRL4DCAF3) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Division , Cyclin D1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , CRISPR-Cas Systems , Cyclin D2/metabolism , Cyclin D3/metabolism , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Gene Knockout Techniques , Genes, Tumor Suppressor , HCT116 Cells , HEK293 Cells , Humans , Male , Mice , Neoplasms/genetics , Ubiquitin/metabolismABSTRACT
Single-domain antibodies ("nanobodies") derived from the variable region of camelid heavy-chain only antibody variants have proven to be widely useful tools for research, therapeutic, and diagnostic applications. In addition to traditional display techniques, methods to generate nanobodies using direct detection by mass spectrometry and DNA sequencing have been highly effective. However, certain technical challenges have limited widespread application. We have optimized a new pipeline for this approach that greatly improves screening sensitivity, depth of antibody coverage, antigen compatibility, and overall hit rate and affinity. We have applied this improved methodology to generate significantly higher affinity nanobody repertoires against widely used targets in biological research-i.e., GFP, tdTomato, GST, and mouse, rabbit, and goat immunoglobulin G. We have characterized these reagents in affinity isolations and tissue immunofluorescence microscopy, identifying those that are optimal for these particularly demanding applications, and engineering dimeric constructs for ultra-high affinity. This study thus provides new nanobody tools directly applicable to a wide variety of research problems, and improved techniques enabling future nanobody development against diverse targets.
Subject(s)
Mass Spectrometry , Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Mice , Mass Spectrometry/methods , Humans , Rabbits , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , GoatsABSTRACT
RATIONALE: The cardiac sodium channel NaV1.5 has a fundamental role in excitability and conduction. Previous studies have shown that sodium channels cluster together in specific cellular subdomains. Their association with intracellular organelles in defined regions of the myocytes, and the functional consequences of that association, remain to be defined. OBJECTIVE: To characterize a subcellular domain formed by sodium channel clusters in the crest region of the myocytes and the subjacent subsarcolemmal mitochondria. METHODS AND RESULTS: Through a combination of imaging approaches including super-resolution microscopy and electron microscopy we identified, in adult cardiac myocytes, a NaV1.5 subpopulation in close proximity to subjacent subsarcolemmal mitochondria; we further found that subjacent subsarcolemmal mitochondria preferentially host the mitochondrial NCLX (Na+/Ca2+ exchanger). This anatomic proximity led us to investigate functional changes in mitochondria resulting from sodium channel activity. Upon TTX (tetrodotoxin) exposure, mitochondria near NaV1.5 channels accumulated more Ca2+ and showed increased reactive oxygen species production when compared with interfibrillar mitochondria. Finally, crosstalk between NaV1.5 channels and mitochondria was analyzed at a transcriptional level. We found that SCN5A (encoding NaV1.5) and SLC8B1 (which encode NaV1.5 and NCLX, respectively) are negatively correlated both in a human transcriptome data set (Genotype-Tissue Expression) and in human-induced pluripotent stem cell-derived cardiac myocytes deficient in SCN5A. CONCLUSIONS: We describe an anatomic hub (a couplon) formed by sodium channel clusters and subjacent subsarcolemmal mitochondria. Preferential localization of NCLX to this domain allows for functional coupling where the extrusion of Ca2+ from the mitochondria is powered, at least in part, by the entry of sodium through NaV1.5 channels. These results provide a novel entry-point into a mechanistic understanding of the intersection between electrical and structural functions of the heart.
Subject(s)
Calcium/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Calcium Signaling , Cell Line , Female , Humans , Kinetics , Male , Mice, Inbred C57BL , Microscopy, Electron, Scanning , Mitochondria, Heart/ultrastructure , Mitochondrial Proteins/genetics , Myocytes, Cardiac/ultrastructure , NAV1.5 Voltage-Gated Sodium Channel/genetics , Single Molecule Imaging , Sodium-Calcium Exchanger/genetics , Superoxides/metabolismABSTRACT
A key component of efforts to address the reproducibility crisis in biomedical research is the development of rigorously validated and renewable protein-affinity reagents. As part of the US National Institutes of Health (NIH) Protein Capture Reagents Program (PCRP), we have generated a collection of 1,406 highly validated immunoprecipitation- and/or immunoblotting-grade mouse monoclonal antibodies (mAbs) to 737 human transcription factors, using an integrated production and validation pipeline. We used HuProt human protein microarrays as a primary validation tool to identify mAbs with high specificity for their cognate targets. We further validated PCRP mAbs by means of multiple experimental applications, including immunoprecipitation, immunoblotting, chromatin immunoprecipitation followed by sequencing (ChIP-seq), and immunohistochemistry. We also conducted a meta-analysis that identified critical variables that contribute to the generation of high-quality mAbs. All validation data, protocols, and links to PCRP mAb suppliers are available at http://proteincapture.org.
Subject(s)
Antibodies, Monoclonal/immunology , Protein Array Analysis/methods , Transcription Factors/metabolism , Animals , Cloning, Molecular , Databases, Factual , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Reproducibility of ResultsABSTRACT
We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screening method that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles for even well-studied proteins. Our approach is robust, economical and automatable, providing inroads to the rigorous, systematic dissection of cellular interactomes.
Subject(s)
Macromolecular Substances/metabolism , Protein Interaction Mapping/methods , Proteins/chemistry , Cell Line , Escherichia coli , Humans , Protein Interaction Maps , Proteins/metabolism , Proteomics/methods , YeastsABSTRACT
Nonhomologous end-joining (NHEJ) is a major repair pathway for DNA double-strand breaks (DSBs), involving synapsis and ligation of the broken strands. We describe the use of in vivo and in vitro single-molecule methods to define the organization and interaction of NHEJ repair proteins at DSB ends. Super-resolution fluorescence microscopy allowed the precise visualization of XRCC4, XLF, and DNA ligase IV filaments adjacent to DSBs, which bridge the broken chromosome and direct rejoining. We show, by single-molecule FRET analysis of the Ku/XRCC4/XLF/DNA ligase IV NHEJ ligation complex, that end-to-end synapsis involves a dynamic positioning of the two ends relative to one another. Our observations form the basis of a new model for NHEJ that describes the mechanism whereby filament-forming proteins bridge DNA DSBs in vivo. In this scheme, the filaments at either end of the DSB interact dynamically to achieve optimal configuration and end-to-end positioning and ligation.
Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair/physiology , DNA Ligases/metabolism , DNA-Binding Proteins/metabolism , Models, Molecular , Blotting, Western , Cell Line, Tumor , DNA Ligase ATP , Fluorescence Resonance Energy Transfer , Fluorescent Antibody Technique , Humans , KineticsABSTRACT
Nanobodies are single-domain antibodies derived from the variable regions of Camelidae atypical immunoglobulins. They show promise as high-affinity reagents for research, diagnostics and therapeutics owing to their high specificity, small size (â¼15 kDa) and straightforward bacterial expression. However, identification of repertoires with sufficiently high affinity has proven time consuming and difficult, hampering nanobody implementation. Our approach generates large repertoires of readily expressible recombinant nanobodies with high affinities and specificities against a given antigen. We demonstrate the efficacy of this approach through the production of large repertoires of nanobodies against two antigens, GFP and mCherry, with Kd values into the subnanomolar range. After mapping diverse epitopes on GFP, we were also able to design ultrahigh-affinity dimeric nanobodies with Kd values as low as â¼30 pM. The approach presented here is well suited for the routine production of high-affinity capture reagents for various biomedical applications.
Subject(s)
Epitopes/immunology , Green Fluorescent Proteins/immunology , Luminescent Proteins/immunology , Recombinant Proteins/isolation & purification , Single-Domain Antibodies/immunology , Single-Domain Antibodies/isolation & purification , Animals , Camelids, New World , Epitopes/genetics , Epitopes/metabolism , Gene Library , Green Fluorescent Proteins/metabolism , Immunization , Luminescent Proteins/metabolism , Lymphocytes/immunology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Red Fluorescent ProteinABSTRACT
Large scale proteomics have made it possible to broadly screen samples for the presence of many types of post-translational modifications, such as phosphorylation, acetylation, and ubiquitination. This type of data has allowed the localization of these modifications to either a specific site on a proteolytically generated peptide or to within a small domain on the peptide. The resulting modification acceptor sites can then be mapped onto the appropriate protein sequences and the information archived. This paper describes the usage of a very large archive of experimental observations of human post-translational modifications to create a map of the most reproducible modification observations onto the complete set of human protein sequences. This set of modification acceptor sites was then directly translated into the genomic coordinates for the codons for the residues at those sites. We constructed the database g2pDB using this protein-to-codon site mapping information. The information in g2pDB has been made available through a RESTful-style API, allowing researchers to determine which specific protein modifications would be perturbed by a set of observed nucleotide variants determined by high throughput DNA or RNA sequencing.
Subject(s)
Databases, Protein , Protein Processing, Post-Translational , Acetylation , Amino Acid Sequence , Humans , Molecular Sequence Annotation , Peptide Mapping , Phosphorylation , Proteomics , SoftwareABSTRACT
BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.
Subject(s)
BRCA2 Protein , DNA Replication , RNA Polymerase II , Ribonuclease H , Humans , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Ribonuclease H/metabolism , Ribonuclease H/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Transcription Termination, Genetic , DNA Damage , Replication Origin , R-Loop Structures , Cell Line, TumorABSTRACT
The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.
ABSTRACT
LINE-1 (L1) is the only autonomously active retrotransposon in the human genome, and accounts for 17% of the human genome. The L1 mRNA encodes two proteins, ORF1p and ORF2p, both essential for retrotransposition. ORF2p has reverse transcriptase and endonuclease activities, while ORF1p is a homotrimeric RNA-binding protein with poorly understood function. Here, we show that condensation of ORF1p is critical for L1 retrotransposition. Using a combination of biochemical reconstitution and live-cell imaging, we demonstrate that electrostatic interactions and trimer conformational dynamics together tune the properties of ORF1p assemblies to allow for efficient L1 ribonucleoprotein (RNP) complex formation in cells. Furthermore, we relate the dynamics of ORF1p assembly and RNP condensate material properties to the ability to complete the entire retrotransposon life-cycle. Mutations that prevented ORF1p condensation led to loss of retrotransposition activity, while orthogonal restoration of coiled-coil conformational flexibility rescued both condensation and retrotransposition. Based on these observations, we propose that dynamic ORF1p oligomerization on L1 RNA drives the formation of an L1 RNP condensate that is essential for retrotransposition.
Subject(s)
Long Interspersed Nucleotide Elements , Retroelements , Humans , Retroelements/genetics , Long Interspersed Nucleotide Elements/genetics , Mutation , RNA-Binding Proteins/metabolism , RNA/metabolismABSTRACT
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled when suboptimal PAM interactions limit basal activity in vivo and when one or more nascent RNA substrates are still tethered to the actively transcribing target DNA in cis. We further show that this phenomenon can be exploited for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes RNA binding in cis as a mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotes.
ABSTRACT
The deubiquitinase USP1 is a critical regulator of genome integrity through the deubiquitylation of Fanconi Anemia proteins and the DNA replication processivity factor, proliferating cell nuclear antigen (PCNA). Uniquely, following UV irradiation, USP1 self-inactivates through autocleavage, which enables its own degradation and in turn, upregulates PCNA monoubiquitylation. However, the functional role for this autocleavage event during physiological conditions remains elusive. Herein, we discover that cells harboring an autocleavage-defective USP1 mutant, while still able to robustly deubiquitylate PCNA, experience more replication fork-stalling and premature fork termination events. Using super-resolution microscopy and live-cell single-molecule tracking, we show that these defects are related to the inability of this USP1 mutant to be properly recycled from sites of active DNA synthesis, resulting in replication-associated lesions. Furthermore, we find that the removal of USP1 molecules from DNA is facilitated by the DNA-dependent metalloprotease Spartan to counteract the cytotoxicity caused by "USP1-trapping". We propose a utility of USP1 inhibitors in cancer therapy based on their ability to induce USP1-trapping lesions and consequent replication stress and genomic instability in cancer cells, similar to how non-covalent DNA-protein crosslinks cause cytotoxicity by imposing steric hindrances upon proteins involved in DNA transactions.
Subject(s)
Genomic Instability , Ubiquitin-Specific Proteases , DNA Damage , DNA Replication , Humans , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , UbiquitinationSubject(s)
DNA Damage , Neoplasms/pathology , Proteomics , Single Molecule Imaging/methods , Cell Line, Tumor , HumansABSTRACT
The ability to monitor DNA replication fork directionality at the genome-wide scale is paramount for a greater understanding of how genetic and environmental perturbations can impact replication dynamics in human cells. Here we describe a detailed protocol for isolating and sequencing Okazaki fragments from asynchronously growing mammalian cells, termed Okazaki fragment sequencing (Ok-seq), for the purpose of quantitatively determining replication initiation and termination frequencies around specific genomic loci by meta-analyses. Briefly, cells are pulsed with 5-ethynyl-2'-deoxyuridine (EdU) to label newly synthesized DNA, and collected for DNA extraction. After size fractionation on a sucrose gradient, Okazaki fragments are concentrated and purified before click chemistry is used to tag the EdU label with a biotin conjugate that is cleavable under mild conditions. Biotinylated Okazaki fragments are then captured on streptavidin beads and ligated to Illumina adapters before library preparation for Illumina sequencing. The use of Ok-seq to interrogate genome-wide replication fork initiation and termination efficiencies can be applied to all unperturbed, asynchronously growing mammalian cells or under conditions of replication stress, and the assay can be performed in less than 2 weeks.