Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Bioorg Chem ; 151: 107672, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39068718

ABSTRACT

Bilastine (BIL) is a novel 2nd generation antihistamine medication is used to treat symptoms of chronic urticaria and allergic rhinitis. However, its poor solubility limits its therapeutic efficacy. In order to enhance the physicochemical characteristics of BIL, various molecular adducts of BIL (Salt, hydrate and co-crystal) were discovered in this study using two distinct salt-formers: Terephthalic acid (TA), 2,4-Dihydroxybenzoic acid (2,4-DHBA), and three nutraceuticals (Vanillic Acid (VA), Hydroquinone (HQN) and Hippuric acid (HA)). Various analytical methods were used to examine the synthesised adducts, including Powder X-Ray Diffraction (PXRD), Single Crystal X-ray Diffraction (SCXRD), and thermal analysis (Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC)). Single-crystal X-ray diffraction (SCXRD) studies avowed that the architectures of the molecular adducts are maintained in the solid state by an array of strong (N+H⋯O-, NH⋯O, OH⋯O) and weak (CH⋯O) hydrogen bonds. Additionally, a solubility test was performed to establish the in vitro release characteristics of newly synthesised BIL adducts and it observed that most of the molecular adducts exhibit higher rates of dissolution in comparison to pure BIL; in particular, BIL.TA.HYD showed the highest solubility and the fastest rate of dissolution. Moreover, experiments on flux permeability and diffusion demonstrated that the BIL.TA.HYD and BIL.VA salts had strong permeability and a high diffusion rate. In addition, the synthesized adduct's stability was assessed at 25 °C and 90 % ± 5 % relative humidity, and it was found that all the molecular salts were stable and did not undergo any phase changes or dissociation. The foregoing result leads us to believe that the newly synthesized molecular adducts' increased permeability and solubility will be advantageous for the creation of novel BIL formulations.

SELECTION OF CITATIONS
SEARCH DETAIL