ABSTRACT
The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Subject(s)
Databases, Genetic , Exome Sequencing , Exome/genetics , Loss of Function Mutation/genetics , Phenotype , Aged , Bone Density/genetics , Collagen Type VI/genetics , Demography , Female , Genes, BRCA1 , Genes, BRCA2 , Genotype , Humans , Ion Channels/genetics , Male , Middle Aged , Neoplasms/genetics , Penetrance , Peptide Fragments/genetics , United Kingdom , Varicose Veins/genetics , ras GTPase-Activating Proteins/geneticsABSTRACT
BACKGROUND AND AIMS: The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LPIAT1). However, whether restoring MBOAT7 expression in established metabolic dysfunction-associated steatotic liver disease dampens the progression to liver fibrosis and, importantly, the mechanism through which decreased MBOAT7 expression exacerbates MASH fibrosis remain unclear. APPROACH AND RESULTS: We first showed that hepatocyte MBOAT7 restoration in mice with diet-induced steatohepatitis slows the progression to liver fibrosis. Conversely, when hepatocyte-MBOAT7 was silenced in mice with established hepatosteatosis, liver fibrosis but not hepatosteatosis was exacerbated. Mechanistic studies revealed that hepatocyte-MBOAT7 restoration in MASH mice lowered hepatocyte-TAZ (WWTR1), which is known to promote MASH fibrosis. Conversely, hepatocyte-MBOAT7 silencing enhanced TAZ upregulation in MASH. Finally, we discovered that changes in hepatocyte phospholipids due to MBOAT7 loss-of-function promote a cholesterol trafficking pathway that upregulates TAZ and the TAZ-induced profibrotic factor Indian hedgehog (IHH). As evidence for relevance in humans, we found that the livers of individuals with MASH carrying the rs641738-T allele had higher hepatocyte nuclear TAZ, indicating higher TAZ activity and increased IHH mRNA. CONCLUSIONS: This study provides evidence for a novel mechanism linking MBOAT7-LoF to MASH fibrosis, adds new insight into an established genetic locus for MASH, and, given the druggability of hepatocyte TAZ for MASH fibrosis, suggests a personalized medicine approach for subjects at increased risk for MASH fibrosis due to inheritance of variants that lower MBOAT7.
ABSTRACT
Novel drug targets for sustained reduction in body mass index (BMI) are needed to curb the epidemic of obesity, which affects 650 million individuals worldwide and is a causal driver of cardiovascular and metabolic disease and mortality. Previous studies reported that the Arg95Ter nonsense variant of GPR151, an orphan G protein-coupled receptor, is associated with reduced BMI and reduced risk of Type 2 Diabetes (T2D). Here, we further investigate GPR151 with the Pakistan Genome Resource (PGR), which is one of the largest exome biobanks of human homozygous loss-of-function carriers (knockouts) in the world. Among PGR participants, we identify eleven GPR151 putative loss-of-function (plof) variants, three of which are present at homozygosity (Arg95Ter, Tyr99Ter, and Phe175LeufsTer7), with a cumulative allele frequency of 2.2%. We confirm these alleles in vitro as loss-of-function. We test if GPR151 plof is associated with BMI, T2D, or other metabolic traits and find that GPR151 deficiency in complete human knockouts is not associated with clinically significant differences in these traits. Relative to Gpr151+/+ mice, Gpr151-/- animals exhibit no difference in body weight on normal chow and higher body weight on a high-fat diet. Together, our findings indicate that GPR151 antagonism is not a compelling therapeutic approach to treatment of obesity.
Subject(s)
Diabetes Mellitus, Type 2 , Receptors, G-Protein-Coupled/metabolism , Animals , Body Mass Index , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Exome , Gene Frequency , Humans , Mice , Obesity/geneticsABSTRACT
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, and results are publicly available through the Regeneron Genetics Center COVID-19 Results Browser.
Subject(s)
COVID-19/diagnosis , COVID-19/genetics , Exome Sequencing , Exome/genetics , Genetic Predisposition to Disease , Hospitalization/statistics & numerical data , COVID-19/immunology , COVID-19/therapy , Female , Humans , Interferons/genetics , Male , Prognosis , SARS-CoV-2 , Sample SizeSubject(s)
Atrial Fibrillation , Cardiomyopathies , Fibrosis , Hypertension , Serine Endopeptidases , South Asian People , Adult , Female , Humans , Alleles , Arrhythmias, Cardiac/genetics , Atrial Fibrillation/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Fibrosis/genetics , Heart Atria/pathology , Heart Atria/diagnostic imaging , Hypertension/genetics , Loss of Function Mutation/genetics , Serine Endopeptidases/genetics , South Asian People/geneticsABSTRACT
Efficient efferocytosis is essential for maintaining homeostasis. Excessive apoptotic cell (AC) death and impaired macrophage efferocytosis lead to autoantigen release and autoantibody production, immune activation, and organ damage. It remains unclear whether these immunogenic autoantigens are the sole cause of increased autoimmunity or if efferocytosis of ACs directly influences macrophage function, impacting their ability to activate T cells and potentially amplifying autoimmune responses. Additionally, it has not been established if enhancing macrophage efferocytosis or modulating macrophage responses to AC engulfment can be protective in autoimmune-like disorders. Our previous work showed WDFY3 is crucial for efficient macrophage efferocytosis. This study reveals that myeloid knockout of Wdfy3 exacerbates autoimmunity in young mice with increased AC burden by systemic injections of ACs and in middle-aged mice developing spontaneous autoimmunity, whereas ectopic overexpression of WDFY3 suppresses autoimmunity in these models. Macrophages, as efferocytes, can activate T cells and the inflammasome upon engulfing ACs, which are suppressed by overexpressing WDFY3. This work uncovered the role of WDFY3 as a protector against autoimmunity by promoting macrophage efferocytosis thus limiting autoantigen production, as well as mitigating T cell activation and inflammasome activation.
ABSTRACT
Growth differentiation factor 15 (GDF15) is a secreted protein that regulates food intake, body weight and stress responses in pre-clinical models1. The physiological function of GDF15 in humans remains unclear. Pharmacologically, GDF15 agonism in humans causes nausea without accompanying weight loss2, and GDF15 antagonism is being tested in clinical trials to treat cachexia and anorexia. Human genetics point to a role for GDF15 in hyperemesis gravidarum, but the safety or impact of complete GDF15 loss, particularly during pregnancy, is unknown3-7. Here we show the absence of an overt phenotype in human GDF15 loss-of-function carriers, including stop gains, frameshifts and the fully inactivating missense variant C211G3. These individuals were identified from 75,018 whole-exome/genome-sequenced participants in the Pakistan Genomic Resource8,9 and recall-by-genotype studies with family-based recruitment of variant carrier probands. We describe 8 homozygous ('knockouts') and 227 heterozygous carriers of loss-of-function alleles, including C211G. GDF15 knockouts range in age from 31 to 75 years, are fertile, have multiple children and show no consistent overt phenotypes, including metabolic dysfunction. Our data support the hypothesis that GDF15 is not required for fertility, healthy pregnancy, foetal development or survival into adulthood. These observations support the safety of therapeutics that block GDF15.
Subject(s)
Growth Differentiation Factor 15 , Humans , Growth Differentiation Factor 15/genetics , Female , Male , Adult , Middle Aged , Phenotype , Aged , Pregnancy , Homozygote , Loss of Function MutationABSTRACT
The genetic factors of stroke in South Asians are largely unexplored. Exome-wide sequencing and association analysis (ExWAS) in 75 K Pakistanis identified NM_000435.3(NOTCH3):c.3691 C > T, encoding the missense amino acid substitution p.Arg1231Cys, enriched in South Asians (alternate allele frequency = 0.58% compared to 0.019% in Western Europeans), and associated with subcortical hemorrhagic stroke [odds ratio (OR) = 3.39, 95% confidence interval (CI) = [2.26, 5.10], p = 3.87 × 10-9), and all strokes (OR [CI] = 2.30 [1.77, 3.01], p = 7.79 × 10-10). NOTCH3 p.Arg231Cys was strongly associated with white matter hyperintensity on MRI in United Kingdom Biobank (UKB) participants (effect [95% CI] in SD units = 1.1 [0.61, 1.5], p = 3.0 × 10-6). The variant is attributable for approximately 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians. These findings highlight the value of diversity in genetic studies and have major implications for genomic medicine and therapeutic development in South Asian populations.
Subject(s)
Genetic Predisposition to Disease , Receptor, Notch3 , Stroke , Aged , Female , Humans , Male , Middle Aged , Exome Sequencing , Gene Frequency , Magnetic Resonance Imaging , Mutation, Missense , Pakistan/ethnology , Polymorphism, Single Nucleotide , Receptor, Notch3/genetics , South Asian People/genetics , Stroke/genetics , United Kingdom/epidemiology , UK BiobankABSTRACT
The UK Biobank Exome Sequencing Consortium (UKB-ESC) is a private-public partnership between the UK Biobank (UKB) and eight biopharmaceutical companies that will complete the sequencing of exomes for all ~500,000 UKB participants. Here, we describe the early results from ~200,000 UKB participants and the features of this project that enabled its success. The biopharmaceutical industry has increasingly used human genetics to improve success in drug discovery. Recognizing the need for large-scale human genetics data, as well as the unique value of the data access and contribution terms of the UKB, the UKB-ESC was formed. As a result, exome data from 200,643 UKB enrollees are now available. These data include ~10 million exonic variants-a rich resource of rare coding variation that is particularly valuable for drug discovery. The UKB-ESC precompetitive collaboration has further strengthened academic and industry ties and has provided teams with an opportunity to interact with and learn from the wider research community.
Subject(s)
Biological Specimen Banks , Drug Discovery , Exome Sequencing , Human Genetics , Research , Drug Discovery/methods , Genomics/methods , Humans , United KingdomABSTRACT
Recent findings indicate that allele-specific expression (ASE) at specific cancer driver gene loci may be of importance in onset/progression of the disease. Of particular interest are loss-of-function (LOF) of tumor suppressor gene (TSGs) alleles. While LOF tumor suppressor mutations are typically considered to be recessive, if these mutant alleles can be significantly differentially expressed relative to wild-type alleles in heterozygotes, the clinical consequences could be significant. LOF TSG alleles are shown to be segregating at high frequencies in world-wide populations of normal/healthy individuals. Matched sets of normal and tumor tissues isolated from 233 cancer patients representing four diverse tumor types demonstrate functionally important changes in patterns of ASE in individuals heterozygous for LOF TSG alleles associated with cancer onset/progression. While a variety of molecular mechanisms were identified as potentially contributing to changes in ASE patterns in cancer, changes in DNA copy number and allele-specific alternative splicing possibly mediated by antisense RNA emerged as predominant factors. In conclusion, LOF TSGs are segregating in human populations at significant frequencies indicating that many otherwise healthy individuals are at elevated risk of developing cancer. Changes in ASE between normal and cancer tissues indicates that LOF TSG alleles may contribute to cancer onset/progression even when heterozygous with wild-type functional alleles.
ABSTRACT
Boolean modelling of biological networks is a well-established technique for abstracting dynamical biomolecular regulation in cells. Specifically, decoding linkages between salient regulatory network states and corresponding cell fate outcomes can help uncover pathological foundations of diseases such as cancer. Attractor landscape analysis is one such methodology which converts complex network behavior into a landscape of network states wherein each state is represented by propensity of its occurrence. Towards undertaking attractor landscape analysis of Boolean networks, we propose an Attractor Landscape Analysis Toolbox (ATLANTIS) for cell fate discovery, from biomolecular networks, and reprogramming upon network perturbation. ATLANTIS can be employed to perform both deterministic and probabilistic analyses. It has been validated by successfully reconstructing attractor landscapes from several published case studies followed by reprogramming of cell fates upon therapeutic treatment of network. Additionally, the biomolecular network of HCT-116 colorectal cancer cell line has been screened for therapeutic evaluation of drug-targets. Our results show agreement between therapeutic efficacies reported by ATLANTIS and the published literature. These case studies sufficiently highlight the in silico cell fate prediction and therapeutic screening potential of the toolbox. Lastly, ATLANTIS can also help guide single or combinatorial therapy responses towards reprogramming biomolecular networks to recover cell fates.