Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Phys Rev Lett ; 117(8): 083003, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27588855

ABSTRACT

It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H_{2}/D_{2} gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H_{2} and D_{2}. The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

2.
Phys Rev Lett ; 117(5): 053001, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517769

ABSTRACT

Ionization of atoms and molecules in strong laser fields is a fundamental process in many fields of research, especially in the emerging field of attosecond science. So far, demonstrably accurate data have only been acquired for atomic hydrogen (H), a species that is accessible to few investigators. Here, we present measurements of the ionization yield for argon, krypton, and xenon with percent-level accuracy, calibrated using H, in a laser regime widely used in attosecond science. We derive a transferable calibration standard for laser peak intensity, accurate to 1.3%, that is based on a simple reference curve. In addition, our measurements provide a much needed benchmark for testing models of ionization in noble-gas atoms, such as the widely employed single-active electron approximation.

3.
Opt Express ; 22(15): 17716-22, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25089391

ABSTRACT

We demonstrate a source of 554 nm pulses with 2.7 ps pulse duration and 1.41 W average power, at a repetition rate of 300 MHz. The yellow-green pulse train is generated from the second harmonic of a 1.11 µm fiber laser source in periodically-poled stoichiometric LiTaO3. A total fundamental power of 2.52 W was used, giving a conversion efficiency of 56%.

4.
Phys Rev Lett ; 113(4): 040501, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25105602

ABSTRACT

Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.

5.
Phys Rev Lett ; 110(11): 113605, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-25166534

ABSTRACT

Fundamental optics such as lenses and prisms work by applying phase shifts of several radians to incoming light, and rapid control of such phase shifts is crucial to telecommunications. However, large, controllable optical phase shifts have remained elusive for isolated quantum systems. We have used a single trapped atomic ion to induce and measure a large optical phase shift of 1.3±0.1 radians in light scattered by the atom. Spatial interferometry between the scattered light and unscattered illumination light enables us to isolate the phase shift in the scattered component. The phase shift achieves the maximum value allowed by atomic theory over the accessible range of laser frequencies, pointing out new opportunities in microscopy and nanophotonics. Single-atom phase shifts of this magnitude open up new quantum information protocols, in particular long-range quantum phase-shift-keying cryptography.

6.
Opt Express ; 20(3): 2717-24, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22330508

ABSTRACT

We have used injection locking to multiply the repetition rate of a passively mode-locked femtosecond fiber laser from 40 MHz to 1 GHz while preserving optical phase coherence between the master laser and the slave output. The system is implemented almost completely in fiber and incorporates gain and passive saturable absorption. The slave repetition rate is set to a rational harmonic of the master repetition rate, inducing pulse formation at the least common multiple of the master and slave repetition rates.


Subject(s)
Lasers , Optical Fibers , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
7.
Phys Rev Lett ; 108(13): 130504, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22540687

ABSTRACT

We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.

8.
Phys Rev Lett ; 109(26): 263902, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368563

ABSTRACT

We present a new interferometer technique whereby multiple extreme ultraviolet light pulses are generated at different positions within a single laser focus (i.e., from successive sources) with a highly controllable time delay. The interferometer technique is tested with two generating media to create two extreme ultraviolet light pulses with a time delay between them. The delay is found to be a consequence of the Gouy phase shift. Ultimately the apparatus is capable of accessing unprecedented time scales by allowing stable and repeatable delays as small as 100 zs.

9.
Opt Lett ; 36(8): 1371-3, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21499360

ABSTRACT

A microfabricated phase Fresnel lens was used to image ytterbium ions trapped in a radio frequency Paul trap. The ions were laser cooled close to the Doppler limit on the 369.5 nm transition, reducing the ion motion so that each ion formed a near point source. By detecting the ion fluorescence on the same transition, near-diffraction-limited imaging with spot sizes of below 440 nm (FWHM) was achieved. To our knowledge, this is the first demonstration of wavelength-scale imaging of trapped ions and the highest imaging resolution ever achieved with atoms in free space.

10.
Opt Lett ; 36(18): 3660-2, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21931424

ABSTRACT

We present experimental data on strong-field ionization of atomic hydrogen by few-cycle laser pulses. We obtain quantitative agreement at the 10% level between the data and an ab initio simulation over a wide range of laser intensities and electron energies.

11.
Phys Rev Lett ; 106(13): 130501, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517362

ABSTRACT

Proposals for long-distance quantum communication rely on the entanglement of matter-based quantum nodes through optical communications channels, but the entangling light pulses have poor temporal behavior in current experiments. Here we show that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform while preserving all quantum properties, including entanglement. Our scheme paves the way for quantum communication at the full data rate of optical telecommunications.

12.
Opt Lett ; 35(10): 1653-5, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20479839

ABSTRACT

We investigate the nonlinear optical phenomenon of self-focusing in air with phase-stabilized few-cycle light pulses. This investigation looks at the role of the carrier-envelope phase by observing a filament in air, a nonlinear phenomenon that can be utilized for few-cycle pulse compression [Appl. Phys. B79, 673 (2004)]. We were able to measure the critical power for self-focusing in air to be 18+/-1 GW for a 6.3 fs pulse centered at 800 nm. Using this value and a basic first-order theory, we predicted that the self-focusing distance should deviate by 790 mum as the carrier-envelope phase is shifted from 0 to pi/2 rad. In contrast, the experimental results showed no deviation in the focus distance with a 3sigma upper limit of 180 mum. These counterintuitive results show the need for further study of self-focusing dynamics in the few-cycle regime.

13.
Nature ; 403(6767): 269-73, 2000 Jan 20.
Article in English | MEDLINE | ID: mdl-10659838

ABSTRACT

The theory of quantum mechanics applies to closed systems. In such ideal situations, a single atom can, for example, exist simultaneously in a superposition of two different spatial locations. In contrast, real systems always interact with their environment, with the consequence that macroscopic quantum superpositions (as illustrated by the 'Schrodinger's cat' thought-experiment) are not observed. Moreover, macroscopic superpositions decay so quickly that even the dynamics of decoherence cannot be observed. However, mesoscopic systems offer the possibility of observing the decoherence of such quantum superpositions. Here we present measurements of the decoherence of superposed motional states of a single trapped atom. Decoherence is induced by coupling the atom to engineered reservoirs, in which the coupling and state of the environment are controllable. We perform three experiments, finding that the decoherence rate scales with the square of a quantity describing the amplitude of the superposition state.

14.
Nature ; 404(6775): 256-9, 2000 Mar 16.
Article in English | MEDLINE | ID: mdl-10749201

ABSTRACT

Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such 'entangled' states explicitly demonstrate the non-local character of quantum theory, having potential applications in high-precision spectroscopy, quantum communication, cryptography and computation. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited--and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.

15.
Opt Express ; 17(23): 20833-9, 2009 Nov 09.
Article in English | MEDLINE | ID: mdl-19997317

ABSTRACT

We generate mode-locked picosecond pulses near 1110 nm by spectrally slicing and reamplifying an octave-spanning supercontinuum source pumped at 1550 nm. The 1110 nm pulses are near transform-limited, with 1.7 ps duration over their 1.2 nm bandwidth, and exhibit high interpulse coherence. Both the supercontinuum source and the pulse synthesis system are implemented completely in fiber. The versatile source construction suggests that pulse synthesis from sliced supercontinuum may be a useful technique across the 1000 - 2000 nm wavelength range.

16.
Science ; 291(5506): 1013-5, 2001 Feb 09.
Article in English | MEDLINE | ID: mdl-11232562

ABSTRACT

We demonstrate a decoherence-free quantum memory of one qubit. By encoding the qubit into the decoherence-free subspace (DFS) of a pair of trapped 9Be+ ions, we protect the qubit from environment-induced dephasing that limits the storage time of a qubit composed of a single ion. We measured the storage time under ambient conditions and under interaction with an engineered noisy environment and observed that encoding into the DFS increases the storage time by up to an order of magnitude. The encoding reversibly transfers an arbitrary qubit stored in a single ion to the DFS of two ions.

17.
Nat Commun ; 8: 15849, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28621332

ABSTRACT

Dissociation of diatomic molecules with odd number of electrons always causes the unpaired electron to localize on one of the two resulting atomic fragments. In the simplest diatomic molecule H2+ dissociation yields a hydrogen atom and a proton with the sole electron ending up on one of the two nuclei. That is equivalent to breaking of a chemical bond-the most fundamental chemical process. Here we observe such electron localization in real time by performing a pump-probe experiment. We demonstrate that in H2+ electron localization is complete in just 15 fs when the molecule's internuclear distance reaches 8 atomic units. The measurement is supported by a theoretical simulation based on numerical solution of the time-dependent Schrödinger equation. This observation advances our understanding of detailed dynamics of molecular dissociation.

18.
Sci Rep ; 6: 19002, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26740072

ABSTRACT

We study transverse electron momentum distribution in strong field atomic ionization driven by laser pulses with varying ellipticity. We show, both experimentally and theoretically, that the transverse electron momentum distribution in the tunneling and over the barrier ionization regimes evolves in a qualitatively different way when the ellipticity parameter describing polarization state of the driving laser pulse increases.

19.
Sci Rep ; 6: 34101, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27666403

ABSTRACT

This work describes the first observations of the ionisation of neon in a metastable atomic state utilising a strong-field, few-cycle light pulse. We compare the observations to theoretical predictions based on the Ammosov-Delone-Krainov (ADK) theory and a solution to the time-dependent Schrödinger equation (TDSE). The TDSE provides better agreement with the experimental data than the ADK theory. We optically pump the target atomic species and measure the ionisation rate as the a function of different steady-state populations in the fine structure of the target state which shows significant ionisation rate dependence on populations of spin-polarised states. The physical mechanism for this effect is unknown.

20.
Sci Rep ; 5: 13527, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26314372

ABSTRACT

When a diatomic molecule is ionized by an intense laser field, the ionization rate depends very strongly on the inter-nuclear separation. That dependence exhibits a pronounced maximum at the inter-nuclear separation known as the "critical distance". This phenomenon was first demonstrated theoretically in H2(+) and became known as "charge-resonance enhanced ionization" (CREI, in reference to a proposed physical mechanism) or simply "enhanced ionization"(EI). All theoretical models of this phenomenon predict a double-peak structure in the R-dependent ionization rate of H2(+). However, such double-peak structure has never been observed experimentally. It was even suggested that it is impossible to observe due to fast motion of the nuclear wavepackets. Here we report a few-cycle pump-probe experiment which clearly resolves that elusive double-peak structure. In the experiment, an expanding H2(+) ion produced by an intense pump pulse is probed by a much weaker probe pulse. The predicted double-peak structure is clearly seen in delay-dependent kinetic energy spectra of protons when pump and probe pulses are polarized parallel to each other. No structure is seen when the probe is polarized perpendicular to the pump.

SELECTION OF CITATIONS
SEARCH DETAIL