Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
EMBO J ; 42(4): e112275, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36350249

ABSTRACT

Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Sphingolipids , Humans , Sphingolipids/metabolism , Ubiquitin/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Homeostasis
2.
J Biol Chem ; 300(2): 105656, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224948

ABSTRACT

The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.


Subject(s)
Fatty Acid Desaturases , Sphingosine , Humans , Fatty Acid Desaturases/metabolism , Fatty Acid Elongases/metabolism , Fatty Acids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sphingosine/metabolism
3.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37078207

ABSTRACT

Maintaining the integrity of the nuclear envelope (NE) is essential for preventing genomic DNA damage. Recent studies have shown that enzymes that catalyze lipid synthesis are involved in NE maintenance, but the underlying mechanism remains unclear. Here, we found that the ceramide synthase (CerS) homolog in the fission yeast Schizosaccharomyces pombe Tlc4 (SPAC17A2.02c) suppressed NE defects in cells lacking the NE proteins Lem2 and Bqt4. Tlc4 possesses a TRAM/LAG1/CLN8 domain that is conserved in CerS proteins and functions through its non-catalytic activity. Tlc4 was localized at the NE and endoplasmic reticulum, similar to CerS proteins, and also showed unique additional localization at the cis- and medial-Golgi cisternae. Growth and mutation analyses revealed that Golgi localization of Tlc4 was tightly linked to its activity of suppressing the defects in the double-deletion mutant of Lem2 and Bqt4. Our results suggest that Lem2 and Bqt4 control the translocation of Tlc4 from the NE to the Golgi, which is necessary for maintaining NE integrity.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Nuclear Envelope/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Nuclear Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
4.
J Lipid Res ; 65(6): 100550, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692573

ABSTRACT

Lipids in the stratum corneum play an important role in the formation of the skin permeability barrier. The causative gene for congenital ichthyosis, NIPAL4, encodes a Mg2+ transporter and is involved in increases in intracellular Mg2+ concentrations that depend on keratinocyte differentiation. However, the role of this increased Mg2+ concentration in skin barrier formation and its effect on the lipid composition of the stratum corneum has remained largely unknown. Therefore, in the present study, we performed a detailed analysis of epidermal lipids in Nipal4 KO mice via TLC and MS. Compared with WT mice, the Nipal4 KO mice showed compositional changes in many ceramide classes (including decreases in ω-O-acylceramides and increases in ω-hydroxy ceramides), together with increases in ω-hydroxy glucosylceramides, triglycerides, and free fatty acids and decreases in ω-O-acyl hydroxy fatty acids containing a linoleic acid. We also found increases in unusual ω-O-acylceramides containing oleic acid or palmitic acid in the KO mice. However, there was little change in levels of cholesterol or protein-bound ceramides. The TLC analysis showed that some unidentified lipids were increased, and the MS analysis showed that these were special ceramides called 1-O-acylceramides. These results suggest that elevated Mg2+ concentrations in differentiated keratinocytes affect the production of various lipids, resulting in the lipid composition necessary for skin barrier formation.


Subject(s)
Epidermis , Magnesium , Mice, Knockout , Animals , Mice , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/deficiency , Ceramides/metabolism , Epidermis/metabolism , Fatty Acid Transport Proteins , Keratinocytes/metabolism , Lipid Metabolism , Lipids/analysis , Magnesium/metabolism , Receptors, Cell Surface/metabolism
5.
J Biol Chem ; 299(4): 104603, 2023 04.
Article in English | MEDLINE | ID: mdl-36907437

ABSTRACT

Phytosphingosine (PHS) is a sphingolipid component present mainly in epithelial tissues, including the epidermis and those lining the digestive tract. DEGS2 is a bifunctional enzyme that produces ceramides (CERs) containing PHS (PHS-CERs) via hydroxylation and sphingosine-CERs via desaturation, using dihydrosphingosine-CERs as substrates. Until now, the role of DEGS2 in permeability barrier functioning, its contribution to PHS-CER production, and the mechanism that differentiates between these two activities have been unknown. Here, we analyzed the barrier functioning of the epidermis, esophagus, and anterior stomach of Degs2 KO mice and found that there were no differences between Degs2 KO and WT mice, indicating normal permeability barriers in the KO mice. In the epidermis, esophagus, and anterior stomach of Degs2 KO mice, PHS-CER levels were greatly reduced relative to WT mice, but PHS-CERs were still present. We obtained similar results for DEGS2 KO human keratinocytes. These results indicate that although DEGS2 plays a major role in PHS-CER production, another synthesis pathway exists as well. Next, we examined the fatty acid (FA) composition of PHS-CERs in various mouse tissues and found that PHS-CER species containing very-long-chain FAs (≥C21) were more abundant than those containing long-chain FAs (C11-C20). A cell-based assay system revealed that the desaturase and hydroxylase activities of DEGS2 toward substrates with different FA chain lengths differed and that its hydroxylase activity was higher toward substrates containing very-long-chain FAs. Collectively, our findings contribute to the elucidation of the molecular mechanism of PHS-CER production.


Subject(s)
Ceramides , Fatty Acid Desaturases , Fatty Acids , Animals , Humans , Mice , Cell Line, Tumor , Ceramides/metabolism , Epidermis/metabolism , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , HEK293 Cells , Keratinocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mixed Function Oxygenases/genetics
6.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125861

ABSTRACT

Ceramides are essential lipids for skin barrier function, and various classes and species exist in the human stratum corneum (SC). To date, the relationship between skin conditions and ceramide composition in healthy individuals has remained largely unclear. In the present study, we measured six skin condition parameters (capacitance, transepidermal water loss, scaliness, roughness, multilayer exfoliation, and corneocyte cell size) for the SC of the cheeks and upper arms of 26 healthy individuals and performed correlation analyses with their SC ceramide profiles, which we measured via liquid chromatography-tandem mass spectrometry. In the cheeks, high levels and/or ratios of two free ceramide classes containing an extra hydroxyl group in the long-chain moiety and a protein-bound ceramide class containing 6-hydroxysphingosine correlated with healthy skin conditions. In contrast, the ratios of two other free ceramide classes, both containing sphingosine, and a protein-bound ceramide class containing 4,14-sphingadiene correlated with unhealthy skin conditions, as did shortening of the carbon chain of the fatty acid portion of two ceramide classes containing non-hydroxy fatty acids. Thus, our findings help to elucidate the relationship between skin conditions and ceramide composition.


Subject(s)
Ceramides , Epidermis , Humans , Ceramides/metabolism , Ceramides/analysis , Female , Male , Epidermis/metabolism , Adult , Middle Aged , Skin/metabolism , Healthy Volunteers , Tandem Mass Spectrometry , Young Adult
7.
FASEB J ; 36(4): e22216, 2022 04.
Article in English | MEDLINE | ID: mdl-35238077

ABSTRACT

Various lipids (mainly meibum lipids secreted by the meibomian glands) are present in the tear film lipid layer and play important roles in tear stability and the health of the cornea and conjunctiva. Many meibum lipids contain fatty alcohols (FAls) with chain lengths ≥C24, but the fatty acyl-CoA reductases (FARs) that produce them remain unclear. Here, using cell-based assays, we found that the two FAR isozymes (FAR1 and FAR2) show different substrate specificities: FAR1 and FAR2 are involved in the production of C16-C18 and ≥C20 FAls, respectively. Next, we generated Far2 knockout (KO) mice and examined their dry eye phenotype and meibum lipid composition. These mice showed a severe dry eye phenotype, characterized by plugged meibomian gland orifices, corneal damage, and tear film instability. The plugging was attributed to an increase in the melting point of the meibum lipids. Liquid chromatography coupled with tandem mass spectrometry revealed that FAl-containing meibum lipids (wax monoesters and types 1ω, 2α, and 2ω wax diesters) with a hydroxyl group at position 1 were almost completely absent in Far2 KO mice. The levels of di-unsaturated (O-acyl)-ω-hydroxy fatty acids were higher in Far2 KO mice than in wild type mice, but those of tri-unsaturated ones were comparable, suggesting the presence of two synthesis pathways for type 1ω wax diesters. These results indicate the importance of FAl-containing meibum lipids in the formation of a functional tear film lipid layer. In addition, our study provides clues to the molecular mechanism of the biosynthesis of meibum lipids.


Subject(s)
Dry Eye Syndromes , Tears , Acyl-CoA Dehydrogenase/metabolism , Aldehyde Oxidoreductases/metabolism , Animals , Dry Eye Syndromes/metabolism , Fatty Alcohols/analysis , Fatty Alcohols/metabolism , Meibomian Glands/metabolism , Mice , Mice, Knockout , Tears/metabolism
8.
Proc Natl Acad Sci U S A ; 117(6): 2914-2922, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974308

ABSTRACT

The epidermis-specific lipid acylceramide plays a pivotal role in the formation of the permeability barrier in the skin; abrogation of its synthesis causes the skin disorder ichthyosis. However, the acylceramide synthetic pathway has not yet been fully elucidated: Namely, the acyl-CoA synthetase (ACS) involved in this pathway remains to be identified. Here, we hypothesized it to be encoded by FATP4/ACSVL4, the causative gene of ichthyosis prematurity syndrome (IPS). In vitro experiments revealed that FATP4 exhibits ACS activity toward an ω-hydroxy fatty acid (FA), an intermediate of the acylceramide synthetic pathway. Fatp4 knockout (KO) mice exhibited severe skin barrier dysfunction and morphological abnormalities in the epidermis. The total amount of acylceramide in Fatp4 KO mice was reduced to ∼10% of wild-type mice. Decreased levels and shortening of chain lengths were observed in the saturated, nonacylated ceramides. FA levels were not decreased in the epidermis of Fatp4 KO mice. The expression levels of the FA elongase Elovl1 were reduced in Fatp4 KO epidermis, partly accounting for the reduction and shortening of saturated, nonacylated ceramides. A decrease in acylceramide levels was also observed in human keratinocytes with FATP4 knockdown. From these results, we conclude that skin barrier dysfunction observed in IPS patients and Fatp4 KO mice is caused mainly by reduced acylceramide production. Our findings further elucidate the molecular mechanism governing acylceramide synthesis and IPS pathology.


Subject(s)
Ceramides/metabolism , Epidermis/metabolism , Fatty Acid Transport Proteins/metabolism , Ichthyosis/metabolism , Infant, Premature, Diseases/metabolism , Animals , Ceramides/chemistry , Fatty Acid Transport Proteins/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Female , Humans , Ichthyosis/genetics , Infant, Premature, Diseases/genetics , Male , Mice, Knockout , Permeability , Skin/metabolism
9.
J Lipid Res ; 63(7): 100235, 2022 07.
Article in English | MEDLINE | ID: mdl-35654151

ABSTRACT

Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16-26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16-24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.


Subject(s)
Ceramides , Tandem Mass Spectrometry , Ceramides/metabolism , Epidermis/metabolism , Humans , Permeability , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism
10.
J Lipid Res ; 63(12): 100308, 2022 12.
Article in English | MEDLINE | ID: mdl-36332686

ABSTRACT

Self-healing collodion baby (SHCB), also called "self-improving collodion baby", is a rare mild variant of autosomal recessive congenital ichthyosis and is defined as a collodion baby who shows the nearly complete resolution of scaling within the first 3 months to 1 year of life. However, during the neonatal period, it is not easy to distinguish SHCB from other inflammatory forms of autosomal recessive congenital ichthyosis, such as congenital ichthyosiform erythroderma. Here, we report a case study of two Japanese SHCB patients with compound heterozygous mutations, c.235G>T (p.(Glu79∗))/ c.1189C>T (p.(Arg397Cys)) and c.1295A>G (p.(Tyr432Cys))/ c.1138delG (p.(Asp380Thrfs∗3)), in CYP4F22, which encodes cytochrome P450, family 4, subfamily F, polypeptide 22 (CYP4F22). Immunohistochemically, inflammation with the strong expression of IL-17C, IL-36γ, and TNF-α was seen in the skin at birth. CYP4F22 is an ultra-long-chain FA ω-hydroxylase responsible for ω-O-acylceramide (acylceramide) production. Among the epidermal ceramides, acylceramide is a key lipid in maintaining the epidermal permeability barrier function. We found that the levels of ceramides with ω-hydroxy FAs including acylceramides and the levels of protein-bound ceramides were much lower in stratum corneum samples obtained by tape stripping from SHCB patients than in those from their unaffected parents and individuals without SHCB. Additionally, our cell-based enzyme assay revealed that two mutants, p.(Glu79∗) and p.(Arg397Cys), had no enzyme activity. Our findings suggest that genetic testing coupled with noninvasive ceramide analyses using tape-stripped stratum corneum samples might be useful for the early and precise diagnosis of congenital ichthyoses, including SHCB.


Subject(s)
Ceramides , Ichthyosis, Lamellar , Infant , Infant, Newborn , Humans , Collodion , Ceramides/metabolism , Ichthyosis, Lamellar/diagnosis , Ichthyosis, Lamellar/genetics , Genetic Testing
11.
J Biol Chem ; 296: 100605, 2021.
Article in English | MEDLINE | ID: mdl-33785361

ABSTRACT

Sphingosine-1-phosphate (S1P) is a lipid mediator that is relatively abundant in plasma and plays an important role in the vascular and immune systems. To date, the only known mechanism for removing S1P from plasma has been dephosphorylation by phospholipid phosphatases (PLPPs) on the surface of cells in contact with the plasma. However, there remains a possibility that PLPP-independent dephosphorylation or direct S1P uptake into cells could occur. To examine these possibilities, here we generated triple KO (TKO) HAP1 cells that lacked all PLPPs (PLPP1-3) present in mammals. In the TKO cells, the intracellular metabolism of externally added deuterium-labeled S1P to ceramide was reduced to 17% compared with the WT cells, indicating that most extracellular S1P is dephosphorylated by PLPPs and then taken up into cells. However, this result also reveals the existence of a PLPP-independent S1P uptake pathway. Tracer experiments using [32P]S1P showed the existence of a direct S1P uptake pathway that functions without prior dephosphorylation. Overexpression of sphingolipid transporter 2 (SPNS2) or of major facilitator superfamily domain containing 2B (MFSD2B), both known S1P efflux transporters, in TKO cells increased the direct uptake of S1P, whereas KO of MFSD2B in TKO cells reduced this uptake. These results suggest that these are channel-type transporters and capable of not only exporting but also importing S1P. Furthermore, we observed that erythroid cells expressing MFSD2B, exhibited high S1P uptake activity. Our findings describing direct S1P uptake may contribute to the elucidation of the molecular mechanisms that regulate plasma S1P concentration.


Subject(s)
Lysophospholipids/metabolism , Phosphoric Monoester Hydrolases/metabolism , Sphingosine/analogs & derivatives , Animals , Biological Transport , Cell Line , Gene Knockout Techniques , Humans , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics , Sphingosine/metabolism
12.
J Cell Sci ; 132(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30975915

ABSTRACT

In eukaryotic cells, chromosomes are confined to the nucleus, which is compartmentalized by the nuclear membranes; these are continuous with the endoplasmic reticulum membranes. Maintaining the homeostasis of these membranes is an important cellular activity performed by lipid metabolic enzymes. However, how lipid metabolic enzymes affect nuclear membrane functions remains to be elucidated. We found that the very-long-chain fatty acid elongase Elo2 is located in the nuclear membrane and prevents lethal defects associated with nuclear membrane ruptures in mutants of the nuclear membrane proteins Lem2 and Bqt4 in the fission yeast Schizosaccharomyces pombe. Lipid composition analysis shows that t20:0/24:0 phytoceramide (a conjugate of C20:0 phytosphingosine and C24:0 fatty acid) is a major ceramide species in S. pombe The quantity of this ceramide is reduced in the absence of Lem2, and restored by increased expression of Elo2. Furthermore, loss of S. pombe Elo2 can be rescued by its human orthologs. These results suggest that the conserved very-long-chain fatty acid elongase producing the ceramide component is essential for nuclear membrane integrity and cell viability in eukaryotes.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Acetyltransferases/metabolism , Fatty Acid Elongases/metabolism , Membrane Proteins/metabolism , Nuclear Envelope/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Humans , Saccharomyces cerevisiae Proteins/metabolism
13.
Biochem Biophys Res Commun ; 560: 1-6, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33965784

ABSTRACT

Cancer immunotherapy, especially treatment with monoclonal antibodies (mAbs) that block programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) signaling, has attracted attention as a new therapeutic option for cancer. However, only a limited number of patients have responded to this treatment approach. In this study, we searched for compounds that enhance the efficacy of anti-PD-1 mAb using mixed lymphocyte reaction (MLR), which is a mixed culture system of the two key cells (dendritic and T cells) involved in tumor immunity. We found that amlexanox enhanced production of interferon (IFN)-γ, an indicator of T cell activation, by anti-PD-1 mAb. Amlexanox also induced PD-L1 expression in dendritic cells in MLR, whereas it did not stimulate interleukin-2 production by Jurkat T cells. These results suggest that amlexanox acts on dendritic cells, not T cells, in MLR. Furthermore, it enhanced the antitumor effect of the anti-PD-1 mAb in vivo in a mouse tumor-bearing model. The combination of amlexanox and anti-PD-1 mAb increased the expression of Ifng encoding IFN-γ, IFN-γ-related genes, Cd274 encoding PD-L1, and cytotoxic T cell-related genes in tumors. In conclusion, amlexanox stimulates the antitumor effect of anti-PD-1 mAb by acting on dendritic cells, which in turn activates cytotoxic T cells in tumors.


Subject(s)
Aminopyridines/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aminopyridines/pharmacology , Animals , B7-H1 Antigen/metabolism , Cell Line, Tumor , Dendritic Cells/metabolism , Female , Humans , Interferon-gamma/biosynthesis , Jurkat Cells , Lymphocyte Culture Test, Mixed , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Cytotoxic/metabolism
14.
FASEB J ; 34(2): 3318-3335, 2020 02.
Article in English | MEDLINE | ID: mdl-31916624

ABSTRACT

Sphingolipids are multifunctional lipids. Among the sphingolipid-component sphingoid bases, 4,14-sphingadiene (SPD) is unique such that it has a cis double bond with a bent structure. Although SPD was discovered half a century ago, its tissue distribution, biosynthesis, and degradation remain poorly understood. Here, we established a specific and quantitative method for SPD measurement and found that SPD exists in a wide range of mammalian tissues. SPD was especially abundant in kidney, where the amount of SPD was ~2/3 of sphingosine, the most abundant sphingoid base in mammals. Although SPD is metabolized to ceramides and SPD 1-phosphate with almost the same efficiency as sphingosine, it is less susceptible to degradation by a cleavage reaction, at least in vitro. We identified the fatty acid desaturase family protein FADS3 as a ceramide desaturase that produces SPD ceramides by desaturating ceramides containing sphingosine. SPD sphingolipids were preferentially localized outside lipid microdomains, suggesting that SPD has different functions compared to other sphingoid bases in the formation of lipid microdomains. In summary, we revealed the biosynthesis and degradation pathways of SPD and its characteristic membrane localization. Our findings contribute to the elucidation of the molecular mechanism underlying the generation of sphingolipid diversity.


Subject(s)
Ceramides/metabolism , Fatty Acid Desaturases/metabolism , Sphingosine/metabolism , Animals , Fatty Acid Desaturases/genetics , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Sphingosine/analogs & derivatives
15.
J Lipid Res ; 61(6): 884-895, 2020 06.
Article in English | MEDLINE | ID: mdl-32265320

ABSTRACT

Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC/MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from human and mouse SC. Phytosphingosine- and 6-hydroxy sphingosine-type ceramides, which both contain an additional hydroxyl group, were abundant in the human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, phytosph-ingosine- and 6-hydroxy sphingosine-type ceramides were present at ∼1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ∼90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing ß-hydroxy or ω-hydroxy FA were abundant in mice. The hydroxylated ß-carbon in ß-hydroxy ceramides was in the (R) configuration. Genetic knockout of ß-hydroxy acyl-CoA dehydratases in HAP1 cells increased ß-hydroxy ceramide levels, suggesting that ß-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the ER, is a substrate for ß-hydroxy ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.


Subject(s)
Ceramides/metabolism , Chromatography, Liquid , Epidermis/metabolism , Lipidomics/methods , Tandem Mass Spectrometry , Animals , Humans , Mice
16.
J Lipid Res ; 61(7): 1104-1114, 2020 07.
Article in English | MEDLINE | ID: mdl-32350077

ABSTRACT

The yeast protein Mpo1 belongs to a protein family that is widely conserved in bacteria, fungi, protozoa, and plants, and is the only protein of this family whose function has so far been elucidated. Mpo1 is an Fe2+-dependent dioxygenase that catalyzes the α-oxidation reaction of 2-hydroxy (2-OH) long-chain FAs (LCFAs) produced in the degradation pathway of the long-chain base phytosphingosine. However, several biochemical characteristics of Mpo1, such as its catalytic residues, membrane topology, and substrate specificity, remain unclear. Here, we report that yeast Mpo1 contains two transmembrane domains and that both its N- and C-terminal regions are exposed to the cytosol. Mutational analyses revealed that three histidine residues conserved in the Mpo1 family are especially important for Mpo1 activity, suggesting that they may be responsible for the formation of coordinate bonds with Fe2+ We found that, in addition to activity toward 2-OH LCFAs, Mpo1 also exhibits activity toward 2-OH very-long-chain FAs derived from the FA moiety of sphingolipids. These results indicate that Mpo1 is involved in the metabolism of long-chain to very-long-chain 2-OH FAs produced in different pathways. We noted that the growth of mpo1Δ cells is delayed upon carbon deprivation, suggesting that the Mpo1-mediated conversion of 2-OH FAs to nonhydroxy FAs is important for utilizing 2-OH FAs as a carbon source under carbon starvation. Our findings help to elucidate the as yet unknown functions and activities of other Mpo1 family members.


Subject(s)
Biocatalysis , Carbon/metabolism , Dioxygenases/metabolism , Saccharomyces cerevisiae/enzymology , Dioxygenases/chemistry , Oxidation-Reduction , Protein Domains , Substrate Specificity
17.
Cell Struct Funct ; 45(1): 1-8, 2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31787665

ABSTRACT

The polytopic plasma membrane protein Rim21 senses both the elevation of ambient pH and alterations in plasma membrane lipid asymmetry in the Rim101 pathway in budding yeast. Rim21 is known to undergo N-glycosylation, but the site and function of the glycosylation modification is not known. Using a systematic mutation analysis, we found that Rim21 is N-glycosylated at an unconventional motif located in the N-terminal extracellular region. The Rim21 mutant protein that failed to receive N-glycosylation showed prolonged protein lifetime compared to that of WT Rim21 protein. Although both the WT and mutant Rim21 localized to the plasma membrane, they exhibited different biochemical fractionation profiles. The mutant Rim21, but not WT Rim21, was mainly fractionated into the heavy membrane fraction. Further, compared to WT Rim21, mutant Rim21 was more easily solubilized with digitonin but was conversely more resistant to solubilization with Triton X-100. Despite these different biochemical properties from WT Rim21, mutant Rim21 protein could still activate the Rim101 pathway in response to external alkalization. Collectively, N-glycosylation of Rim21 is not indispensable for its activity as a sensor protein, but modulates the residence of Rim21 protein to some microdomains within the plasma membrane with distinct lipid conditions, thereby affecting its turnover.Key words: plasma membrane, lipid asymmetry, N-linked glycosylation, microdomain, Saccharomyces cerevisiae.


Subject(s)
Cell Membrane/metabolism , Membrane Proteins/metabolism , Receptors, Cell Surface/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane/genetics , Glycosylation , Saccharomyces cerevisiae/metabolism
18.
FASEB J ; 33(1): 928-941, 2019 01.
Article in English | MEDLINE | ID: mdl-30085884

ABSTRACT

Insulation by myelin lipids is essential to fast action potential conductivity: changes in their quality or amount can cause several neurologic disorders. Sjögren-Larsson syndrome (SLS) is one such disorder, which is caused by mutations in the fatty aldehyde dehydrogenase ALDH3A2. To date, the molecular mechanism underlying SLS pathology has remained unknown. In this study, we found that Aldh3a2 is expressed in oligodendrocytes and neurons in the mouse brain, and neurons of Aldh3a2 knockout (KO) mice exhibited impaired metabolism of the long-chain base, a component of sphingolipids. Aldh3a2 KO mice showed several abnormalities corresponding to SLS symptoms in behavioral tests, including increased paw slips on a balance beam and light-induced anxiety. In their brain tissue, 2-hydroxygalactosylceramide, an important lipid for myelin function and maintenance, was reduced by the inactivation of fatty acid 2-hydroxylase. Our findings provide important new insights into the molecular mechanisms responsible for neural pathogenesis caused by lipid metabolism abnormalities.-Kanetake, T., Sassa, T., Nojiri, K., Sawai, M., Hattori, S., Miyakawa, T., Kitamura, T., Kihara, A. Neural symptoms in a gene knockout mouse model of Sjögren-Larsson syndrome are associated with a decrease in 2-hydroxygalactosylceramide.


Subject(s)
Behavior, Animal , Galactosylceramides/deficiency , Sjogren-Larsson Syndrome/physiopathology , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Anxiety/metabolism , Depression/metabolism , Galactosylceramides/genetics , Humans , Light , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Sjogren-Larsson Syndrome/genetics , Sjogren-Larsson Syndrome/metabolism
19.
Mol Cell ; 46(4): 461-71, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22633490

ABSTRACT

Sphingosine 1-phosphate (S1P) functions not only as a bioactive lipid molecule, but also as an important intermediate of the sole sphingolipid-to-glycerolipid metabolic pathway. However, the precise reactions and the enzymes involved in this pathway remain unresolved. We report here that yeast HFD1 and the Sjögren-Larsson syndrome (SLS)-causative mammalian gene ALDH3A2 are responsible for conversion of the S1P degradation product hexadecenal to hexadecenoic acid. The absence of ALDH3A2 in CHO-K1 mutant cells caused abnormal metabolism of S1P/hexadecenal to ether-linked glycerolipids. Moreover, we demonstrate that yeast Faa1 and Faa4 and mammalian ACSL family members are acyl-CoA synthetases involved in the sphingolipid-to-glycerolipid metabolic pathway and that hexadecenoic acid accumulates in Δfaa1 Δfaa4 mutant cells. These results unveil the entire S1P metabolic pathway: S1P is metabolized to glycerolipids via hexadecenal, hexadecenoic acid, hexadecenoyl-CoA, and palmitoyl-CoA. From our results we propose a possibility that accumulation of the S1P metabolite hexadecenal contributes to the pathogenesis of SLS.


Subject(s)
Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Lysophospholipids/metabolism , Sjogren-Larsson Syndrome/genetics , Sjogren-Larsson Syndrome/metabolism , Sphingosine/analogs & derivatives , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Animals , CHO Cells , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Cricetinae , Cricetulus , Genes, Fungal , Humans , Metabolic Networks and Pathways , Mutation , Palmitic Acids/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sjogren-Larsson Syndrome/etiology , Sphingosine/metabolism
20.
J Med Genet ; 56(3): 164-175, 2019 03.
Article in English | MEDLINE | ID: mdl-30487246

ABSTRACT

BACKGROUND: Very long-chain fatty acids (VLCFAs) are essential for functioning of biological membranes. ELOVL fatty acid elongase 1 catalyses elongation of saturated and monounsaturated C22-C26-VLCFAs. We studied two patients with a dominant ELOVL1 mutation. Independently, Kutkowska-Kazmierczak et al. had investigated the same patients and found the same mutation. We extended our study towards additional biochemical, functional, and therapeutic aspects. METHODS: We did mutation screening by whole exome sequencing. RNA-sequencing was performed in patient and control fibroblasts. Ceramide and sphingomyelin levels were measured by LC-MS/MS. ELOVL1 activity was determined by a stable isotope-labelled [13C]malonyl-CoA elongation assay. ELOVL1 expression patterns were investigated by immunofluorescence, in situ hybridisation and RT-qPCR. As treatment option, we investigated VLCFA loading of fibroblasts. RESULTS: Both patients carried an identical heterozygous de novo ELOVL1 mutation (c.494C>T, NM_001256399; p.S165F) not deriving from a founder allele. Patients suffered from epidermal hyperproliferation and increased keratinisation (ichthyosis). Hypomyelination of the central white matter explained spastic paraplegia and central nystagmus, while optic atrophy was causative for reduction of peripheral vision and visual acuity. The mutation abrogated ELOVL1 enzymatic activity and reduced ≥C24 ceramides and sphingomyelins in patient cells. Fibroblast loading with C22:0-VLCFAs increased C24:0-ceramides and sphingomyelins. We found competitive inhibition for ceramide and sphingomyelin synthesis between saturated and monounsaturated VLCFAs. Transcriptome analysis revealed upregulation of modules involved in epidermal development and keratinisation, and downregulation of genes for neurodevelopment, myelination, and synaptogenesis. Many regulated genes carried consensus proliferator-activated receptor (PPAR)α and PPARγ binding motifs in their 5'-regions. CONCLUSION: A dominant ELOVL1 mutation causes a neuro-ichthyotic disorder possibly amenable to treatment with PPAR-modulating drugs.


Subject(s)
Acanthosis Nigricans/genetics , Deafness/genetics , Demyelinating Diseases/genetics , Fatty Acid Elongases/genetics , Ichthyosis/genetics , Mutation , Optic Atrophy/genetics , Paraplegia/genetics , Acanthosis Nigricans/diagnosis , Adolescent , Amino Acid Sequence , Biomarkers , Biopsy , Child, Preschool , Deafness/diagnosis , Demyelinating Diseases/diagnosis , Female , Fibroblasts/metabolism , Gene Expression , Genetic Predisposition to Disease , Genotype , Humans , Ichthyosis/diagnosis , Magnetic Resonance Imaging , Male , Optic Atrophy/diagnosis , Paraplegia/diagnosis , Pedigree , Peroxisome Proliferator-Activated Receptors/metabolism , Phenotype , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL