Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Bacteriol ; 206(6): e0008724, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38771039

ABSTRACT

Bacterial meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when bacteria are able to cross the blood-brain barrier (BBB) or the meningeal-cerebrospinal fluid barrier (mBCSFB). The BBB and mBCSFB comprise highly specialized brain endothelial cells (BECs) that typically restrict pathogen entry. Group B Streptococcus (GBS or Streptococcus agalactiae) is the leading cause of neonatal meningitis. Until recently, identification of GBS virulence factors has relied on genetic screening approaches. Instead, we here conducted RNA-seq analysis on GBS when interacting with induced pluripotent stem cell-derived BECs (iBECs) to pinpoint virulence-associated genes. Of the 2,068 annotated protein-coding genes of GBS, 430 transcripts displayed significant changes in expression after interacting with BECs. Notably, we found that the majority of differentially expressed GBS transcripts were downregulated (360 genes) during infection of iBECs. Interestingly, codY, encoding a pleiotropic transcriptional repressor in low-G + C Gram-positive bacteria, was identified as being highly downregulated. We conducted qPCR to confirm the codY downregulation observed via RNA-seq during the GBS-iBEC interaction and obtained codY mutants in three different GBS background parental strains. As anticipated from the RNA-seq results, the [Formula: see text]codY strains were more adherent and invasive in two in vitro BEC models. Together, this demonstrates the utility of RNA-seq during the BEC interaction to identify GBS virulence modulators. IMPORTANCE: Group B Streptococcus (GBS) meningitis remains the leading cause of neonatal meningitis. Research work has identified surface factors and two-component systems that contribute to GBS disruption of the blood-brain barrier (BBB). These discoveries often relied on genetic screening approaches. Here, we provide transcriptomic data describing how GBS changes its transcriptome when interacting with brain endothelial cells. Additionally, we have phenotypically validated these data by obtaining mutants of a select regulator that is highly down-regulated during infection and testing on our BBB model. This work provides the research field with a validated data set that can provide an insight into potential pathways that GBS requires to interact with the BBB and open the door to new discoveries.


Subject(s)
Brain , Endothelial Cells , Streptococcus agalactiae , Transcriptome , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Endothelial Cells/microbiology , Humans , Brain/microbiology , Brain/metabolism , Blood-Brain Barrier/microbiology , Blood-Brain Barrier/metabolism , Gene Expression Regulation, Bacterial , Virulence Factors/genetics , Virulence Factors/metabolism , Virulence , Streptococcal Infections/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meningitis, Bacterial/microbiology
2.
Acta Neuropathol ; 131(2): 185-209, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26744349

ABSTRACT

Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host-pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host-pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood-brain and blood-cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces.


Subject(s)
Brain/immunology , Host-Pathogen Interactions/immunology , Meningitis, Bacterial/physiopathology , Animals , Brain/microbiology , Humans
3.
Microb Pathog ; 79: 57-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25617657

ABSTRACT

Streptococcus agalactiae (Group B Streptococcus, GBS) is an encapsulated, Gram-positive bacterium that is a leading cause of neonatal pneumonia, sepsis and meningitis, and an emerging aquaculture pathogen. The zebrafish (Danio rerio) is a genetically tractable model vertebrate that has been used to analyze the pathogenesis of both aquatic and human bacterial pathogens. We have developed a larval zebrafish model of GBS infection to study bacterial and host factors that contribute to disease progression. GBS infection resulted in dose dependent larval death, and GBS serotype III, ST-17 strain was observed as the most virulent. Virulence was dependent on the presence of the GBS capsule, surface anchored lipoteichoic acid (LTA) and toxin production, as infection with GBS mutants lacking these factors resulted in little to no mortality. Additionally, interleukin-1ß (il1b) and CXCL-8 (cxcl8a) were significantly induced following GBS infection compared to controls. We also visualized GBS outside the brain vasculature, suggesting GBS penetration into the brain during the course of infection. Our data demonstrate that zebrafish larvae are a valuable model organism to study GBS pathogenesis.


Subject(s)
Disease Models, Animal , Host-Pathogen Interactions , Larva/microbiology , Streptococcal Infections/microbiology , Streptococcal Infections/pathology , Streptococcus agalactiae/growth & development , Zebrafish/microbiology , Animals , Brain/microbiology , Brain/pathology , Interleukin-1beta/analysis , Interleukin-8/analysis , Streptococcus agalactiae/pathogenicity , Survival Analysis , Virulence , Virulence Factors/analysis , Virulence Factors/genetics
4.
Infect Immun ; 82(6): 2276-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24643538

ABSTRACT

Group B Streptococcus (GBS) is currently the leading cause of neonatal meningitis. This is due to its ability to survive and multiply in the bloodstream and interact with specialized human brain microvascular endothelial cells (hBMEC), which constitute the blood-brain barrier (BBB). The exact mechanism(s) of GBS-BBB penetration is still largely unknown. We and others have shown that GBS interacts with components of the extracellular matrix. In this study, we demonstrate that GBS of representative serotypes binds immobilized and cell surface fibronectin and identify a putative fibronectin binding protein, streptococcal fibronectin binding protein A (SfbA). Allelic replacement of sfbA in the GBS chromosome resulted in a significant decrease in ability to bind fibronection and invade hBMEC compared with the wild-type (WT) parental strain. Expression of SfbA in the noninvasive strain Lactococcus lactis was sufficient to promote fibronectin binding and hBMEC invasion. Furthermore, the addition of an antifibronectin antibody or an RGD peptide that blocks fibronectin binding to integrins significantly reduced invasion of the WT but not the sfbA-deficient mutant strain, demonstrating the importance of an SfbA-fibronectin-integrin interaction for GBS cellular invasion. Using a murine model of GBS meningitis, we also observed that WT GBS penetrated the brain and established meningitis more frequently than did the ΔsfbA mutant strain. Our data suggest that GBS SfbA plays an important role in bacterial interaction with BBB endothelium and the pathogenesis of streptococcal meningitis.


Subject(s)
Adhesins, Bacterial/physiology , Brain/microbiology , Endothelium, Vascular/microbiology , Meningitis, Bacterial/physiopathology , Streptococcal Infections/physiopathology , Streptococcus agalactiae/physiology , Adhesins, Bacterial/metabolism , Animals , Bacterial Adhesion/physiology , Cell Line , Colony Count, Microbial , Disease Models, Animal , Endothelial Cells/microbiology , Gene Expression Regulation, Bacterial , Integrins/physiology , Meningitis, Bacterial/etiology , Mice , Mutation , Streptococcus agalactiae/pathogenicity
5.
PLoS Pathog ; 8(10): e1002947, 2012.
Article in English | MEDLINE | ID: mdl-23055927

ABSTRACT

The serine-rich repeat glycoprotein Srr1 of Streptococcus agalactiae (GBS) is thought to be an important adhesin for the pathogenesis of meningitis. Although expression of Srr1 is associated with increased binding to human brain microvascular endothelial cells (hBMEC), the molecular basis for this interaction is not well defined. We now demonstrate that Srr1 contributes to GBS attachment to hBMEC via the direct interaction of its binding region (BR) with human fibrinogen. When assessed by Far Western blotting, Srr1 was the only protein in GBS extracts that bound fibrinogen. Studies using recombinant Srr1-BR and purified fibrinogen in vitro confirmed a direct protein-protein interaction. Srr1-BR binding was localized to amino acids 283-410 of the fibrinogen Aα chain. Structural predictions indicated that the conformation of Srr1-BR is likely to resemble that of SdrG and other related staphylococcal proteins that bind to fibrinogen through a "dock, lock, and latch" mechanism (DLL). Deletion of the predicted latch domain of Srr1-BR abolished the interaction of the BR with fibrinogen. In addition, a mutant GBS strain lacking the latch domain exhibited reduced binding to hBMEC, and was significantly attenuated in an in vivo model of meningitis. These results indicate that Srr1 can bind fibrinogen directly likely through a DLL mechanism, which has not been described for other streptococcal adhesins. This interaction was important for the pathogenesis of GBS central nervous system invasion and subsequent disease progression.


Subject(s)
Bacterial Proteins/metabolism , Brain/metabolism , Endothelium/metabolism , Fibrinogen/metabolism , Glycoproteins/metabolism , Meningitis, Bacterial/microbiology , Streptococcal Infections/microbiology , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Adhesins, Bacterial/metabolism , Animals , Bacterial Adhesion , Binding Sites , Brain/microbiology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Endothelium/microbiology , Humans , Meningitis, Bacterial/metabolism , Mice , Protein Binding , Protein Conformation , Sequence Analysis, Protein , Streptococcal Infections/metabolism
6.
mBio ; 15(2): e0286223, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38193670

ABSTRACT

Microbe-induced meningoencephalitis/meningitis is a life-threatening infection of the central nervous system (CNS) that occurs when pathogens are able to cross the blood-brain barrier (BBB) and gain access to the CNS. The BBB consists of highly specialized brain endothelial cells that exhibit specific properties to allow tight regulation of CNS homeostasis and prevent pathogen crossing. However, during meningoencephalitis/meningitis, the BBB fails to protect the CNS. Modeling the BBB remains a challenge due to the specialized characteristics of these cells. In this review, we cover the induced pluripotent stem cell-derived, brain-like endothelial cell model during host-pathogen interaction, highlighting the strengths and recent work on various pathogens known to interact with the BBB. As stem cell technologies are becoming more prominent, the stem cell-derived, brain-like endothelial cell model has been able to reveal new insights in vitro, which remain challenging with other in vitro cell-based models consisting of primary human brain endothelial cells and immortalized human brain endothelial cell lines.


Subject(s)
Induced Pluripotent Stem Cells , Meningoencephalitis , Humans , Blood-Brain Barrier/metabolism , Endothelial Cells , Host Microbial Interactions , Brain/metabolism
7.
J Control Release ; 371: 324-337, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823584

ABSTRACT

There is an urgent clinical need to develop nerve-blocking agents capable of inducing long duration sensory block without muscle weakness or paralysis to treat post-operative and chronic pain conditions. Here, we report a galacturonic acid-capsaicin (GalA-CAP) prodrug as an effective nociceptive-selective axon blocking agent. Capsaicin selectively acts on nociceptive signaling without motor nerve blockade or disruption of proprioception and touch sensation, and the galacturonic acid moiety enhance prodrug permeability across the restrictive peripheral nerve barriers (PNBs) via carrier-mediated transport by the facilitative glucose transporters (GLUTs). In addition, following prodrug transport across PNBs, the inactive prodrug is converted to active capsaicin through linker hydrolysis, leading to sustained drug release. A single injection of GalA-CAP prodrug at the sciatic nerves of rats led to nociceptive-selective nerve blockade lasting for 234 ± 37 h, which is a sufficient duration to address the most intense period of postsurgical pain. Furthermore, the prodrug markedly mitigated capsaicin-associated side effects, leading to a notable decrease in systemic toxicity, benign local tissue reactions, and diminished burning and irritant effects.


Subject(s)
Capsaicin , Nerve Block , Prodrugs , Rats, Sprague-Dawley , Sciatic Nerve , Prodrugs/administration & dosage , Animals , Capsaicin/administration & dosage , Capsaicin/analogs & derivatives , Male , Sciatic Nerve/drug effects , Nerve Block/methods , Rats , Analgesics/administration & dosage , Analgesics/pharmacology
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1073-89, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23695252

ABSTRACT

The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding.


Subject(s)
Fimbriae Proteins/chemistry , Streptococcus agalactiae/chemistry , Binding Sites , Extracellular Matrix Proteins/physiology , Fimbriae Proteins/genetics , Fimbriae Proteins/physiology , Models, Molecular , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Streptococcus agalactiae/genetics , Streptococcus agalactiae/physiology , X-Ray Diffraction
9.
Adv Ther (Weinh) ; 6(4)2023 Apr.
Article in English | MEDLINE | ID: mdl-37649593

ABSTRACT

Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.

10.
Front Cell Infect Microbiol ; 13: 1171275, 2023.
Article in English | MEDLINE | ID: mdl-37139492

ABSTRACT

Coxsackievirus B3 (CVB3) is a significant human pathogen that is commonly found worldwide. CVB3 among other enteroviruses, are the leading causes of aseptic meningo-encephalitis which can be fatal especially in young children. How the virus gains access to the brain is poorly-understood, and the host-virus interactions that occur at the blood-brain barrier (BBB) is even less-characterized. The BBB is a highly specialized biological barrier consisting primarily of brain endothelial cells which possess unique barrier properties and facilitate the passage of nutrients into the brain while restricting access to toxins and pathogens including viruses. To determine the effects of CVB3 infection on the BBB, we utilized a model of human induced-pluripotent stem cell-derived brain-like endothelial cells (iBECs) to ascertain if CVB3 infection may alter barrier cell function and overall survival. In this study, we determined that these iBECs indeed are susceptible to CVB3 infection and release high titers of extracellular virus. We also determined that infected iBECs maintain high transendothelial electrical resistance (TEER) during early infection despite possessing high viral load. TEER progressively declines at later stages of infection. Interestingly, despite the high viral burden and TEER disruptions at later timepoints, infected iBEC monolayers remain intact, indicating a low degree of late-stage virally-mediated cell death, which may contribute to prolonged viral shedding. We had previously reported that CVB3 infections rely on the activation of transient receptor vanilloid potential 1 (TRPV1) and found that inhibiting TRPV1 activity with SB-366791 significantly limited CVB3 infection of HeLa cervical cancer cells. Similarly in this study, we observed that treating iBECs with SB-366791 significantly reduced CVB3 infection, which suggests that not only can this drug potentially limit viral entry into the brain, but also demonstrates that this infection model could be a valuable platform for testing antiviral treatments of neurotropic viruses. In all, our findings elucidate the unique effects of CVB3 infection on the BBB and shed light on potential mechanisms by which the virus can initiate infections in the brain.


Subject(s)
Coxsackievirus Infections , Enterovirus , Pluripotent Stem Cells , Child , Humans , Child, Preschool , Endothelial Cells/metabolism , HeLa Cells , Pluripotent Stem Cells/metabolism , Brain/metabolism , Enterovirus B, Human/physiology , Virus Replication
11.
Pharmaceutics ; 15(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37111527

ABSTRACT

Quercetin, one of the major natural flavonoids, has demonstrated great pharmacological potential as an antioxidant and in overcoming drug resistance. However, its low aqueous solubility and poor stability limit its potential applications. Previous studies suggest that the formation of quercetin-metal complexes could increase quercetin stability and biological activity. In this paper, we systematically investigated the formation of quercetin-iron complex nanoparticles by varying the ligand-to-metal ratios with the goal of increasing the aqueous solubility and stability of quercetin. It was found that quercetin-iron complex nanoparticles could be reproducibly synthesized with several ligand-to-iron ratios at room temperature. The UV-Vis spectra of the nanoparticles indicated that nanoparticle formation greatly increased the stability and solubility of quercetin. Compared to free quercetin, the quercetin-iron complex nanoparticles exhibited enhanced antioxidant activities and elongated effects. Our preliminary cellular evaluation suggests that these nanoparticles had minimal cytotoxicity and could effectively block the efflux pump of cells, indicating their potential for cancer treatment.

12.
Nat Commun ; 14(1): 1927, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045819

ABSTRACT

Cancer cells exhibit elevated lipid synthesis. In breast and other cancer types, genes involved in lipid production are highly upregulated, but the mechanisms that control their expression remain poorly understood. Using integrated transcriptomic, lipidomic, and molecular studies, here we report that DAXX is a regulator of oncogenic lipogenesis. DAXX depletion attenuates, while its overexpression enhances, lipogenic gene expression, lipogenesis, and tumor growth. Mechanistically, DAXX interacts with SREBP1 and SREBP2 and activates SREBP-mediated transcription. DAXX associates with lipogenic gene promoters through SREBPs. Underscoring the critical roles for the DAXX-SREBP interaction for lipogenesis, SREBP2 knockdown attenuates tumor growth in cells with DAXX overexpression, and DAXX mutants unable to bind SREBP1/2 have weakened activity in promoting lipogenesis and tumor growth. Remarkably, a DAXX mutant deficient of SUMO-binding fails to activate SREBP1/2 and lipogenesis due to impaired SREBP binding and chromatin recruitment and is defective of stimulating tumorigenesis. Hence, DAXX's SUMO-binding activity is critical to oncogenic lipogenesis. Notably, a peptide corresponding to DAXX's C-terminal SUMO-interacting motif (SIM2) is cell-membrane permeable, disrupts the DAXX-SREBP1/2 interactions, and inhibits lipogenesis and tumor growth. These results establish DAXX as a regulator of lipogenesis and a potential therapeutic target for cancer therapy.


Subject(s)
Lipogenesis , Neoplasms , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Lipids , Lipogenesis/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Mice
13.
Article in English | MEDLINE | ID: mdl-23258350

ABSTRACT

BACKGROUND/AIMS: Endonasal endoscopic surgery continues to gain acceptance as a minimally invasive, effective approach for benign and malignant pathology of the paranasal sinuses and skull base. Postoperative epistaxis could potentially result in rapid and devastating consequences due to hemorrhage. Our objective was to assess the incidence and causes of epistaxis after endoscopic skull base surgery. METHODS: Retrospective review of patients undergoing endoscopic skull base surgeries from 2007 to 2012. The main outcome measure was epistaxis requiring a visit to a hospital or clinic occurring within 30 days of surgery. RESULTS: In our cohort of 330 consecutive patients, 10 (3%) experienced postoperative epistaxis, including 3 who had multiple episodes (14 events). A majority of the patients were controlled with packing in the emergency room (8/14 events). One patient required chemical cautery and 5 required control in the operating room. The only patient characteristic that reached significance was abstinence from alcohol (p value = 0.04). However, patients with epistaxis were more likely to be male, older and have hypertension. CONCLUSION: This study confirms that the risk of epistaxis after endoscopic skull base surgery is low and similar to sinonasal surgery for inflammatory conditions.


Subject(s)
Adenoma/surgery , Epistaxis/epidemiology , Epistaxis/therapy , Paranasal Sinus Neoplasms/surgery , Pituitary Neoplasms/surgery , Postoperative Complications/epidemiology , Skull Base Neoplasms/surgery , Skull Base/surgery , Adult , Aged , Aged, 80 and over , Alcohol Drinking , Craniopharyngioma/surgery , Female , Humans , Incidence , Length of Stay , Male , Middle Aged , Retrospective Studies , Risk Factors
14.
Methods Mol Biol ; 2492: 73-101, 2022.
Article in English | MEDLINE | ID: mdl-35733039

ABSTRACT

Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs when blood-borne bacteria are able to exit the cerebral vasculature and cause inflammation. The blood-brain barrier (BBB) and the meningeal blood-CSF barrier (mBCSFB) are composed of highly specialized brain endothelial cells (BECs) that possess unique phenotypes when compared to their peripheral endothelial counterparts. To cause meningitis, bacterial pathogens must be able to interact and penetrate these specialized BECs to gain access to the CNS. In vitro models have been employed to study bacterial-BEC interactions; however, many lack BEC phenotypes. Induced pluripotent stem cell (iPSC) technologies have enabled the derivation of brain endothelial-like cells that phenocopy BECs in culture. Recently, these iPSC-BECs have been employed to examine the host-pathogen interaction at the endothelial brain barriers. Using two clinically relevant human meningeal pathogens, this chapter describes the use of iPSC-BECs to study various aspects of BEC-bacterial interaction.


Subject(s)
Induced Pluripotent Stem Cells , Bacteria , Blood-Brain Barrier , Brain , Cell Communication , Endothelial Cells
15.
Fluids Barriers CNS ; 19(1): 81, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289516

ABSTRACT

BACKGROUND: Bacterial meningitis is a life-threatening disease that occurs when pathogens such as Neisseria meningitidis cross the meningeal blood cerebrospinal fluid barrier (mBCSFB) and infect the meninges. Due to the human-specific nature of N. meningitidis, previous research investigating this complex host-pathogen interaction has mostly been done in vitro using immortalized brain endothelial cells (BECs) alone, which often do not retain relevant barrier properties in culture. Here, we developed physiologically relevant mBCSFB models using BECs in co-culture with leptomeningeal cells (LMCs) to examine N. meningitidis interaction. METHODS: We used BEC-like cells derived from induced pluripotent stem cells (iBECs) or hCMEC/D3 cells in co-culture with LMCs derived from tumor biopsies. We employed TEM and structured illumination microscopy to characterize the models as well as bacterial interaction. We measured TEER and sodium fluorescein (NaF) permeability to determine barrier tightness and integrity. We then analyzed bacterial adherence and penetration of the cell barrier and examined changes in host gene expression of tight junctions as well as chemokines and cytokines in response to infection. RESULTS: Both cell types remained distinct in co-culture and iBECs showed characteristic expression of BEC markers including tight junction proteins and endothelial markers. iBEC barrier function as determined by TEER and NaF permeability was improved by LMC co-culture and remained stable for seven days. BEC response to N. meningitidis infection was not affected by LMC co-culture. We detected considerable amounts of BEC-adherent meningococci and a relatively small number of intracellular bacteria. Interestingly, we discovered bacteria traversing the BEC-LMC barrier within the first 24 h post-infection, when barrier integrity was still high, suggesting a transcellular route for N. meningitidis into the CNS. Finally, we observed deterioration of barrier properties including loss of TEER and reduced expression of cell-junction components at late time points of infection. CONCLUSIONS: Here, we report, for the first time, on co-culture of human iPSC derived BECs or hCMEC/D3 with meningioma derived LMCs and find that LMC co-culture improves barrier properties of iBECs. These novel models allow for a better understanding of N. meningitidis interaction at the mBCSFB in a physiologically relevant setting.


Subject(s)
Meningeal Neoplasms , Neisseria meningitidis , Humans , Neisseria meningitidis/metabolism , Endothelial Cells/metabolism , Fluorescein/metabolism , Blood-Brain Barrier/metabolism , Cytokines/metabolism , Chemokines , Tight Junction Proteins/metabolism
16.
Pathogens ; 11(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35456149

ABSTRACT

Bacterial meningitis is defined as serious inflammation of the central nervous system (CNS) in which bacteria infect the blood-brain barrier (BBB), a network of highly specialized brain endothelial cells (BECs). Dysfunction of the BBB is a hallmark of bacterial meningitis. Group B Streptococcus (GBS) is one of the leading organisms that cause bacterial meningitis, especially in neonates. Macropinocytosis is an actin-dependent form of endocytosis that is also tightly regulated at the BBB. Previous studies have shown that inhibition of actin-dependent processes decreases bacterial invasion, suggesting that pathogens can utilize macropinocytotic pathways for invasion. The purpose of this project is to study the factors that lead to dysfunction of the BBB. We demonstrate that infection with GBS increases rates of endocytosis in BECs. We identified a potential pathway, PLC-PKC-Nox2, in BECs that contributes to macropinocytosis regulation. Here we demonstrate that downstream inhibition of PLC, PKC, or Nox2 significantly blocks GBS invasion of BECs. Additionally, we show that pharmacological activation of PKC can turn on macropinocytosis and increase bacterial invasion of nonpathogenic yet genetically similar Lactococcus lactis. Our results suggest that GBS activates BEC signaling pathways that increase rates of macropinocytosis and subsequently the invasion of GBS.

17.
Fluids Barriers CNS ; 19(1): 19, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35232464

ABSTRACT

BACKGROUND: Scientific conferences are vital communication events for scientists in academia, industry, and government agencies. In the brain barriers research field, several international conferences exist that allow researchers to present data, share knowledge, and discuss novel ideas and concepts. These meetings are critical platforms for researchers to connect and exchange breakthrough findings on a regular basis. Due to the worldwide COVID-19 pandemic, all in-person meetings were canceled in 2020. In response, we launched the Brain Barriers Virtual 2020 (BBV2020) seminar series, the first stand-in virtual event for the brain barriers field, to offer scientists a virtual platform to present their work. Here we report the aggregate attendance information on two in-person meetings compared with BBV2020 and comment on the utility of the virtual platform. METHODS: The BBV2020 seminar series was hosted on a Zoom webinar platform and was free of cost for participants. Using registration- and Zoom-based data from the BBV2020 virtual seminar series and survey data collected from BBV2020 participants, we analyzed attendance trends, global reach, participation based on career stage, and engagement of BBV2020. We compared these data with those from two previous in-person conferences, a BBB meeting held in 2018 and CVB 2019. RESULTS: We found that BBV2020 seminar participation steadily decreased over the course of the series. In contrast, live participation was consistently above 100 attendees and recording views were above 200 views per seminar. We also found that participants valued BBV2020 as a supplement during the COVID-19 pandemic in 2020. Based on one post-BBV2020 survey, the majority of participants indicated that they would prefer in-person meetings but would welcome a virtual component to future in-person meetings. Compared to in-person meetings, BBV2020 enabled participation from a broad range of career stages and was attended by scientists in academic, industry, and government agencies from a wide range of countries worldwide. CONCLUSIONS: Our findings suggest that a virtual event such as the BBV2020 seminar series provides easy access to science for researchers across all career stages around the globe. However, we recognize that limitations exist. Regardless, such a virtual event could be a valuable tool for the brain barriers community to reach and engage scientists worldwide to further grow the brain barriers research field in the future.


Subject(s)
COVID-19 , Central Nervous System , Congresses as Topic , Videoconferencing , Humans , SARS-CoV-2 , Surveys and Questionnaires
18.
J Vis Exp ; (161)2020 07 14.
Article in English | MEDLINE | ID: mdl-32744533

ABSTRACT

Meningococcal meningitis is a life-threatening infection that occurs when Neisseria meningitidis (meningococcus, Nm) can gain access to the central nervous system (CNS) by penetrating highly specialized brain endothelial cells (BECs). As Nm is a human-specific pathogen, the lack of robust in vivo model systems makes study of the host-pathogen interactions between Nm and BECs challenging and establishes a need for a human based model that mimics native BECs. BECs possess tighter barrier properties when compared to peripheral endothelial cells characterized by complex tight junctions and elevated trans-endothelial electrical resistance (TEER). However, many in vitro models, such as primary BECs and immortalized BECs, either lack or rapidly lose their barrier properties after removal from the native neural microenvironment. Recent advances in human stem-cell technologies have developed methods for deriving brain-like endothelial cells from induced pluripotent stem-cells (iPSCs) that better phenocopy BECs when compared to other in vitro human models. The use of iPSC-derived BECs (iPSC-BECs) to model Nm-BEC interaction has the benefit of using human cells that possess BEC barrier properties, and can be used to examine barrier destruction, innate immune activation, and bacterial interaction. Here we demonstrate how to derive iPSC-BECs from iPSCs in addition to bacterial preparation, infection, and sample collection for analysis.


Subject(s)
Brain/cytology , Endothelial Cells/cytology , Endothelial Cells/microbiology , Induced Pluripotent Stem Cells/cytology , Neisseria meningitidis/physiology , Humans
19.
Methods Mol Biol ; 1969: 135-148, 2019.
Article in English | MEDLINE | ID: mdl-30877675

ABSTRACT

Bacterial meningitis is a serious, life-threatening infection of the central nervous system (CNS). To cause meningitis, bacteria must interact with and penetrate the meningeal blood-cerebrospinal fluid barrier (mB/CSFB), which comprises highly specialized brain endothelial cells. Neisseria meningitidis (meningococcus) is a leading cause of bacterial meningitis, and examination meningococcus' interaction with the BBB is critical for understanding disease progression. To examine specific interactions, in vitro mB/CSFB models have been developed and employed and are of great importance because in vivo models have been difficult to produce considering Neisseria meningitidis is exclusively a human pathogen. Most in vitro blood-brain barrier and mB/CSF models use primary and immortalized brain endothelial cells, and these models have been used to examine bacterial-mB/CSFB interactions by a variety of pathogens. This chapter describes the use of past and current in vitro brain endothelial cells to model Neisseria meningitidis interaction with the mB/CSFB, and inform on the standard operating procedure for their use.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Endothelium, Vascular/metabolism , Host-Pathogen Interactions , Meningococcal Infections/metabolism , Neisseria meningitidis/physiology , Virulence Factors/metabolism , Blood-Brain Barrier/cytology , Blood-Brain Barrier/microbiology , Brain/cytology , Brain/microbiology , Endothelium, Vascular/cytology , Endothelium, Vascular/microbiology , Humans , Meningococcal Infections/microbiology , Protein Binding
20.
Front Microbiol ; 10: 1336, 2019.
Article in English | MEDLINE | ID: mdl-31263460

ABSTRACT

The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.

SELECTION OF CITATIONS
SEARCH DETAIL