Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Foods ; 9(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32726971

ABSTRACT

Enzyme treatment and fermentation of cereals are known processes that enhance the release of bound bioactive compounds to make them available for bioactivity. In this study, we tested the angiotensin converting enzyme (ACE) inhibitory ability of destarched rice, Prozyme 2000p treated destarched rice (DP), and fermented DP samples. Prozyme 2000p treatment increased the ACE inhibitory ability from 15 ± 5% to 45 ± 3%. Fermentation of the Prozyme 2000p treated samples with Enterococcus faecium EBD1 significantly increased the ACE inhibitory ability to 75 ± 5%, while captopril showed an ACE inhibition of 92 ± 4%. An untargeted metabolomics approach using Ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of vitamins, phenolic compounds, antioxidant peptides, DPP IV inhibitory peptides, and antihypertensive peptides in the fermented samples which may account for its strong ACE inhibition. Although fermented DP had decreased fatty acid levels, the amount of essential amino acid improved drastically compared to destarched rice. Our results show that fermenting Prozyme-treated destarched rice with Enterococcus faecium EBD1 generates abundant bioactive compounds necessary for developing antihypertensive functional foods.

2.
Pathogens ; 9(7)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674310

ABSTRACT

Dental caries is one of the most common microbe-mediated oral diseases in human beings. At present, the accepted etiology of caries is based on a four-factor theory that includes oral microorganisms, oral environment, host, and time. Excessive exposure to dietary carbohydrates leads to the accumulation of acid-producing and acid-resistant microorganisms in the mouth. Dental caries is driven by dysbiosis of the dental biofilm adherent to the enamel surface. Effective preventive methods include inhibiting the cariogenic microorganisms, treatment with an anti-biofilm agent, and sugar intake control. The goal is to reduce the total amount of biofilm or the levels of specific pathogens. Natural products could be recommended for preventing dental caries, since they may possess fewer side effects in comparison with synthetic antimicrobials. Herein, the mechanisms of oral microbial community development and functional specialization are discussed. We highlight the application of widely explored natural products in the last five years for their ability to inhibit cariogenic microorganisms.

3.
RSC Adv ; 10(68): 41430-41442, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516557

ABSTRACT

Brassica vegetables are well-characterized, containing a wide-spectrum of phenolic compounds that are responsible for their diverse biological activities like antioxidant and antimicrobial activities. This study explored the preservative effect of Brassica oleracea var. capitate f. alba (white cabbage; WC) on beef under refrigerated conditions for 16 days. The antimicrobial activities of WC were evaluated against foodborne pathogenic bacteria and fungi. The antioxidant activity was determined on the basis of total phenolic and flavonoid contents, through employing DPPH and ABTS assays. The chemical composition was analyzed by GC-MS analysis. The results indicated that among the different solvent extracts, white cabbage chloroform extract [WCCE] exhibited outstanding bioactive properties due to the presence of 4-nitro-3-(trifluoromethyl)phenol, and the effects of WCCE at different levels (A and B) on the quality and shelf life of beef in storage were evaluated. The color parameters (lightness, yellowness, and redness), texture analysis, and pH values were monitored constantly with 4 days interval, and microbial analysis was conducted. The results showed that WCCE-A treatment significantly reduced the total viable counts, psychrotrophic bacteria, and yeast-molds when compared with WCCE-B and control during refrigeration storage, with the activity varying in a dose-dependent manner (p < 0.05). Significantly, the WCCE-A treatments had better appearance compared with the control after 16 days of storage. All results confirmed that WCCE which is rich in bioactive compounds, effectively maintains the quality of beef compared to the control by retarding lipid oxidation and microbial growth at refrigeration temperature and also emphasize the potential applications of this plant in different industrial sectors.

4.
Foods ; 9(5)2020 May 04.
Article in English | MEDLINE | ID: mdl-32375308

ABSTRACT

In the future, plant based phytochemicals will be considered as efficient replacement sources of chemical preservatives, to act as potential bio-preservatives. We investigated the antibacterial and antioxidant activity of red cabbage (RC) extracts using different solvents. Among all extracts, chloroform extract exhibited strong antimicrobial and antioxidant activities. Hence, the phytochemical constitutions of the RC chloroform extract was examined by GC-MS analysis, and further, based on molecular docking analysis, revealed 2-Methoxy-4-vinylphenol and benzofuran as two major compounds found to be possessing higher degrees of interaction with DNA gyrase (4PLB; -8.63 Kcal.mol-1) and lipoprotein (LpxC-8.229 Kcal.mol-1), respectively, of the bacterial cell wall, which leads to higher antimicrobial efficacy. Further, it was confirmed with that the in vivo Caenorhabditis elegans model (but no cytotoxic effect) was exhibited in the MCF-7 cell line. Thus, we investigated the influence of this extract on the shelf life of meat under refrigeration storage. The physicochemical properties were observed periodically, and microbial analysis was conducted. The shelf life of the beef was enhanced (up to eight days) in terms of microbial and physiochemical properties, at 4 ± 2 °C when compared to control. We concluded that chloroform extract of RC has potential as a natural preservative in the meat processing industry.

5.
Bioresour Technol ; 130: 288-95, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23313673

ABSTRACT

Sucrose is one of the most promising carbon sources for industrial fermentation. We expressed synthetic modules expressing genes of the PEP-PTS and non-PTS pathways in Escherichia coli K12 for comparison. We selected PEP-PTS pathway genes of Lactobacillus plantarum and Staphylococcus xylosus and non-PTS pathway genes of sucrose-utilizing (Scr(+)) E. coli EC3132. Switchable Scr(+) modules expressing E. coli EC3132 non-PTS genes conferred better sucrose-utilizing ability on Scr(-)E. coli K12 than E. coli EC3132. Scr(+) modules expressing S. xylosus PEP-PTS genes conferred a sucrose-utilizing ability on E. coli K12. Among L. plantarum PEP-PTS genes, SacA(LP) and SacK(LP) were functional in E. coli K12. CscA(EC)-CscB(EC)-CscK(EC) (non-PEP-PTS module) or ScrA(SX)-SacA(LP)-SacK(LP) (PEP-PTS module) was introduced to a diapolycopene-producing E. coli strain. In both Scr(+)E. coli K12, the sucrose-utilizing ability of the modules was not affected by diapolycopene formation, indicating that the modular Scr(+) systems could be employed for developing sustainable bioprocesses using sucrose.


Subject(s)
Carotenoids/biosynthesis , Escherichia coli K12/metabolism , Phosphoenolpyruvate/metabolism , Phosphotransferases/genetics , Sucrose/metabolism , Cell Proliferation , Escherichia coli K12/genetics , Gene Regulatory Networks , Lactobacillus plantarum/enzymology , Lactobacillus plantarum/genetics , Phosphotransferases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Staphylococcus/enzymology , Staphylococcus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL