Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Psychiatry ; 28(11): 4642-4654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730842

ABSTRACT

Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.


Subject(s)
Hypothalamic Area, Lateral , Ventral Tegmental Area , Animals , Mice , Dopamine/metabolism , Dopaminergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Hypothalamic Area, Lateral/metabolism , Nucleus Accumbens/metabolism , Ventral Tegmental Area/metabolism
2.
Front Microbiol ; 13: 898339, 2022.
Article in English | MEDLINE | ID: mdl-36033841

ABSTRACT

Wastewater treatment plants (WWTPs) are considered a sink and a source of antibiotic resistance. In this study, we applied both culture-dependent and SmartChip-based culture-independent approaches for the investigation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) at Jungnang (JN), located in the Han River, Seoul, South Korea, for 2 years, i.e., 2017 and 2018. The JN WWTP reduced the diversity and abundance of ARB and ARGs but was not sufficient for removing them all. Interestingly, through the treatment process in the JN WWTP, the composition of diverse multidrug-resistant (MDR) bacteria was concentrated mainly into some genera of the Gammaproteobacteria class (Citrobacter, Escherichia-Shigella, and Stenotrophomonas), which could be key carriages to spread ARGs into the environments. In addition, SmartChip analyses showed that the relative abundance and the number of ARGs were significantly decreased from the influents to the effluents in both 2017 and 2018. SmartChip analyses for 2 years also allowed to notify the core ARGs in the influents and the effluents with the presence of clinically relevant core ARGs, such as vanC, bla OXA , and bla NDM , which persisted in the treatment process. Considering diverse bacterial mechanisms for exchanging and transferring ARGs, the occurrence of MDR bacteria and core ARGs could be a source for the blooming of the antibiotic resistome in the WWTP and nearby environments.

3.
Commun Biol ; 5(1): 838, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982261

ABSTRACT

IRSp53 (or BAIAP2) is an abundant excitatory postsynaptic scaffolding/adaptor protein that is involved in actin regulation and has been implicated in autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder. IRSp53 deletion in mice leads to enhanced NMDA receptor (NMDAR) function and social deficits that are responsive to NMDAR inhibition. However, it remains unclear whether IRSp53 re-expression in the adult IRSp53-mutant mouse brain after the completion of brain development could reverse these synaptic and behavioral dysfunctions. Here we employed a brain-blood barrier (BBB)-penetrant adeno-associated virus (AAV) known as PHP.eB to drive adult IRSp53 re-expression in IRSp53-mutant mice. The adult IRSp53 re-expression normalized social deficits without affecting hyperactivity or anxiety-like behavior. In addition, adult IRSp53 re-expression normalized NMDAR-mediated excitatory synaptic transmission in the medial prefrontal cortex. Our results suggest that adult IRSp53 re-expression can normalize synaptic and behavioral deficits in IRSp53-mutant mice and that BBB-penetrant adult gene re-expression has therapeutic potential.


Subject(s)
N-Methylaspartate , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Social Behavior , Synaptic Transmission
4.
Front Microbiol ; 12: 645411, 2021.
Article in English | MEDLINE | ID: mdl-33833746

ABSTRACT

High level carbapenem and extensively drug resistant (XDR) Escherichia coli strain N7, which produces a variant of New Delhi metallo-ß-lactamase (NDM-5), was isolated from the influent of the Jungnang wastewater treatment plant located on Han River, Seoul, South Korea. Phenotypic and genotypic resistances to carbapenem were tested using agar and broth dilution methods, and polymerase chain reaction. Whole-genome sequencing was performed to characterize the genetic structure of strain N7. E. coli strain N7, which harbors the bla NDM-5 gene, showed high level of carbapenem resistance at concentrations of doripenem (512 mg/L) and meropenem (256 mg/L), and XDR to 15 antibiotics. Based on the genomic sequence analysis, two plasmids, a hybrid IncHI2/N-type and an IncX3 type, were present. The former contains a cluster (bla NDM-5-ble MBL -trpF-dsbD) bracketed by multi-insertional sequences, IS3000, ISAba125, IS5, and IS26. The latter carries the following resistance genes: bla CTX-14, aac(3)-IV, aadA1, aadA2, aph(3')-Ia, aph(4)-Ia, sul1, sul2, sul3, dfrA12, fosA3, oqxA, oqxB, mph(A), and floR, and cmlA1. The chromosome, contig3, and contig5 also carry bla CTX-64 and mdf(A), tet(A), and erm(B), tet(M) and aadA22, respectively. Strain N7 also harbors virulence factors such as fimH, flu, ecpABCDE, sfmA, hlyE, and gadA. This study demonstrates the emergence of high level carbapenem resistant XDR E. coli strain N7 containing bla NDM-5 in aquatic environment, Seoul, South Korea. Due to the presence of mobile genetic elements, this strain could horizontally transfer resistance genes, including bla NDM-5 to environmental bacteria. Thus, it is necessary to conduct continuous surveillance for carbapenem resistance in various aquatic environments.

SELECTION OF CITATIONS
SEARCH DETAIL