Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Ann Bot ; 112(9): 1911-20, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24201138

ABSTRACT

BACKGROUND AND AIMS: Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. METHODS: Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. KEY RESULTS: The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. CONCLUSIONS: The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.


Subject(s)
Cambium/growth & development , Tracheophyta/growth & development , Xylem/growth & development , Canada , Cell Differentiation , Climate Change , Europe , Xylem/cytology
2.
Oecologia ; 173(4): 1587-600, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23771802

ABSTRACT

Environment and genetics combine to influence tree growth and should therefore be jointly considered when evaluating forest responses in a warming climate. Here, we combine dendroclimatology and population genetic approaches with the aim of attributing climatic influences on growth of European larch (Larix decidua) and Norway spruce (Picea abies). Increment cores and genomic DNA samples were collected from populations along a ~900-m elevational transect where the air temperature gradient encompasses a ~4 °C temperature difference. We found that low genetic differentiation among populations indicates gene flow is high, suggesting that migration rate is high enough to counteract the selective pressures of local environmental variation. We observed lower growth rates towards higher elevations and a transition from negative to positive correlations with growing season temperature upward along the elevational transect. With increasing elevation there was also a clear increase in the explained variance of growth due to summer temperatures. Comparisons between climate sensitivity patterns observed along this elevational transect with those from Larix and Picea sites distributed across the Alps reveal good agreement, and suggest that tree-ring width (TRW) variations are more climate-driven than genetics-driven at regional and larger scales. We conclude that elevational transects are an extremely valuable platform for understanding climatic-driven changes over time and can be especially powerful when working within an assessed genetic framework.


Subject(s)
Altitude , Climate , Larix/growth & development , Picea/growth & development , Trees/growth & development , DNA, Plant/genetics , Gene Flow , Genetics, Population , Larix/genetics , Picea/genetics , Seasons , Sequence Analysis, DNA , Switzerland , Temperature , Trees/genetics
3.
Tree Physiol ; 33(9): 913-23, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24128848

ABSTRACT

The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.


Subject(s)
Cambium/growth & development , Cambium/metabolism , Carbohydrates/chemistry , Tracheophyta/growth & development , Tracheophyta/metabolism , Trees/growth & development , Trees/metabolism , Analysis of Variance , Cambium/cytology , Cell Count , Larix/growth & development , Larix/metabolism , Picea/growth & development , Picea/metabolism , Seasons , Time Factors , Xylem/physiology
SELECTION OF CITATIONS
SEARCH DETAIL