Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Med ; 112: 102651, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37562233

ABSTRACT

Monitoring Radiotherapy Quality Assurance (QA) using Statistical Process Control (SPC) methods has gained wide acceptance. The significance of understanding the SPC methodologies has increased among the medical physics community with the release of Task Group (TG) reports from the American Association of Physicists in Medicine (AAPM) on patient-specific QA (PSQA) (TG-218) and Proton therapy QA (TG-224). Even though these reports recommend using SPC for QA analysis, physicists have ambiguities and doubts in choosing proper SPC tools and methodologies. This review article summarises the utilisation of SPC methods for different Radiotherapy QAs published in the literature, such as PSQA, routine Linac QA and patient positional verification. QA analysis using SPC could assist the user in distinguishing between 'special' and 'routine' sources of variations in the QA, which can aid in reducing actions on false positive QA results. For improved PSQA monitoring, machine-specific, site-specific, and technique-specific Tolerance Limits and Action Limits derived from a two-stage SPC-based approach can be used. Adopting a combination of Shewhart's control charts and time-weighted control charts for routine Linac QA monitoring could add more insights to the QA process. Incorporating SPC tools into existing image review modules or introducing new SPC software packages specifically designed for clinical use can significantly enhance the image review process. Proper selection and having adequate knowledge of SPC tools are essential for efficient QA monitoring, which is a function of the type of QA data available, and the magnitude of process drift to be monitored.

2.
J Med Phys ; 47(4): 367-373, 2022.
Article in English | MEDLINE | ID: mdl-36908496

ABSTRACT

Purpose: Higher frequency of transcriptional errors in the radiotherapy electronic charts for patients on telecobalt was noted. We describe the impact of the quality improvement (QI) initiative under the department's incident learning program (ILP). Materials and Methods: The multidisciplinary quality team under ILP was formed to identify the root cause and introduce methods to reduce (smart goal) the current transcription error rate of 40% to <5% over 12 months. A root cause analysis including a fishbone diagram, Pareto chart, and action prioritization matrix was done to identify key drivers and interventions. Plan-Do-Study-Act (PDSA) Cycle strategy was undertaken. The primary outcome was percentage charts with transcriptional errors per month. The balancing measure was "new errors" due to interventions. All errors were identified and corrected before patient treatment. Results: The average baseline error rate was 44.14%. The two key drivers identified were education of the workforce involved and mechanical synchronization of various machine parameters. PDSA cycle 1 consisted of an education program and sensitization of the staff, post which the error rates dropped to 5.4% (t-test P = 0.03). Post-PDSA cycle 2 (synchronization of machine parameters), 1, 3, and 6 months and 1 year, the error rates were sustained to 5%, 4%, 3%, and 4% (t-test P > 0.05) with no new additional errors. Conclusions: With various generations of machines and technologies that are not synchronized, the proneness of transcription errors can be very high which can be identified and corrected with a typical QI process under ILP.

3.
J Appl Clin Med Phys ; 6(3): 1-12, 2005.
Article in English | MEDLINE | ID: mdl-16143787

ABSTRACT

Treatment of the internal mammary chain (IMC) with radiation therapy (RT) for patients with breast cancer remains a controversial issue. Different treatment techniques have been proposed, including oblique electrons, electron-photon combination, and partially wide tangents (PWTs). However, the residual heart dose can remain significant mainly for left-sided lesions. With PWTs and intensity-modulated radiotherapy (IMRT), respiratory movement and errors in IMC localization remain a problem. The goal of this paper is to evaluate the impact of IMC brachytherapy (IMCBT) combined with 3D conformal radiotherapy (3DCRT) planning on heart, lung, and contralateral breast doses compared with IMRT. All plans including IMCBT plus 3DCRT were done on PLATO; IMRT plans were generated using the Cadplan-Helios inverse treatment-planning software module with the "sliding window" technique. Dose-volume histograms (DVHs) were calculated for all volumes of interest. Conformity and homogeneity index was also calculated for the planning target volume (PTV). Dose distribution in the surrounding normal tissue was evaluated. The mean conformity of the PTV was found to be 1.06 with IMCBT plus 3DCRT and 1.12 with IMRT. The mean homogeneity (HI95/107) was found to be 1.4 with IMCBT plus 3DCRT and 3.32 with IMRT. Using the IMCBT plus 3DCRT technique, the mean dose to the heart, contralateral breast, ipsilateral lung, and contralateral lung decreased with values of 32%, 6.76%, 20% and 5.52%, respectively, compared with IMRT. This novel technique of IMCBT plus 3DCRT can potentially reduce the dose to the heart and lungs. In addition, it rivals IMRT because of its unique advantages in localization, obviating the need for respiratory gating and maximum sparing of heart and other structures.


Subject(s)
Brachytherapy/methods , Breast Neoplasms/radiotherapy , Breast Neoplasms/secondary , Imaging, Three-Dimensional/methods , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Body Burden , Breast Neoplasms/diagnostic imaging , Female , Humans , Lymphatic Metastasis , Organ Specificity , Radiography , Radiotherapy Dosage , Relative Biological Effectiveness , Treatment Outcome
4.
J Med Phys ; 40(4): 190-7, 2015.
Article in English | MEDLINE | ID: mdl-26865754

ABSTRACT

To compare the treatment plans generated with three-dimensional conformal radiation therapy (3DCRT), intensity modulated radiotherapy (IMRT), and helical tomotherapy (HT) for stereotactic body radiotherapy of lung, twenty patients with medically inoperable (early nonsmall cell lung cancer) were retrospectively reviewed for dosimetric evaluation of treatment delivery techniques (3DCRT, IMRT, and HT). A dose of 6 Gy per fraction in 8 fractions was prescribed to deliver 95% of the prescription dose to 95% volume of planning target volume (PTV). Plan quality was assessed using conformity index (CI) and homogeneity index (HI). Doses to critical organs were assessed. Mean CI with 3DCRT, IMRT, and HT was 1.19 (standard deviation [SD] 0.13), 1.18 (SD 0.11), and 1.08 (SD 0.04), respectively. Mean HI with 3DCRT, IMRT, and HT was 1.14 (SD 0.05), 1.08 (SD 0.02), and 1.07 (SD 0.04), respectively. Mean R50% values for 3DCRT, IMRT, and HT was 8.5 (SD 0.35), 7.04 (SD 0.45), and 5.43 (SD 0.29), respectively. D2cm was found superior with IMRT and HT. Significant sparing of critical organs can be achieved with highly conformal techniques (IMRT and HT) without compromising the PTV conformity and homogeneity.

5.
J Med Phys ; 39(1): 40-3, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24600171

ABSTRACT

The objective of this study was to investigate the dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiotherapy. The influence of titanium-mandibular plate with the screws on radiation dose was tested on four real bones from mandible with the metal and screws fixed. Radiochromic films were used for dosimetry. The bone and metal were inserted through the film at the center symmetrically. This was then placed in a small jig (7 cm × 7 cm × 10 cm) to hold the film vertically straight. The polymer granules (tissue-equivalent) were placed around the film for homogeneous scatter medium. The film was irradiated with 6 MV X-rays for 200 monitor units in Trilogy linear accelerator for 10 cm × 10 cm field size with source to axis distance of 100 cm at 5 cm. A single film was also irradiated without any bone and metal interface for reference data. The absolute dose and the vertical dose profile were measured from the film. There was 10% dose enhancement due to the backscatter radiation just adjacent to the metal-bone interface for all the materials. The extent of the backscatter effect was up to 4 mm. There is significant higher dose enhancement in the soft tissue/skin due to the backscatter radiation from the metallic components in the treatment region.

SELECTION OF CITATIONS
SEARCH DETAIL