Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cereb Cortex ; 33(12): 7678-7687, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36920227

ABSTRACT

Wind-up is a nociceptive-specific phenomenon in which pain sensations are facilitated, in a frequency-dependent manner, by the repeated application of noxious stimuli of constant intensity, with invariant tactile sensations. Thus, cortical activities during wind-up could be an alteration associated with pain potentiation. We aimed to investigate somatosensory-evoked cortical responses and induced brain oscillations during wind-up by recording magnetoencephalograms. Wind-up was produced by the application of 11 consecutive electrical stimuli to the sural nerve, repeated at a frequency of 1 Hz without varying the intensity. The augmentation of flexion reflexes and pain rating scores were measured simultaneously as an index of wind-up. In the time-frequency analyses, the γ-band late event-related synchronization and the ß-band event-related desynchronization were observed in the primary somatosensory region and the bilateral operculo-insular region, respectively. Repetitive exposure to the stimuli enhanced these activities, along with an increase in the flexion reflex magnitude. The evoked cortical activity reflected novelty, with no alteration to these repetitive stimuli. Observed oscillations enhanced by repetitive stimulation at a constant intensity could reflect a pain mechanism associated with wind-up.


Subject(s)
Magnetoencephalography , Pain , Humans , Reflex/physiology , Pain Measurement , Electric Stimulation
2.
Front Neurosci ; 16: 837340, 2022.
Article in English | MEDLINE | ID: mdl-35281508

ABSTRACT

Wind-up like pain or temporal summation of pain is a phenomenon in which pain sensation is increased in a frequency-dependent manner by applying repeated noxious stimuli of uniform intensity. Temporal summation in humans has been studied by observing the increase in pain or flexion reflex by repetitive electrical or thermal stimulations. Nonetheless, because the measurement is accompanied by severe pain, a minimally invasive method is desirable. Gradual augmentation of flexion reflex and pain induced by repetitive stimulation of the sural nerve was observed using three stimulation methods-namely, bipolar electrical, magnetic, and monopolar electrical stimulation, with 11 healthy male subjects in each group. The effects of frequency, intensity, and number of repetitive stimuli on the increase in the magnitude of flexion reflex and pain rating were compared among the three methods. The reflex was measured using electromyography (EMG) from the short head of the biceps femoris. All three methods produced a frequency- and intensity-dependent progressive increase in reflex and pain; pain scores were significantly lower for magnetic and monopolar stimulations than for bipolar stimulation (P < 0.05). The slope of increase in the reflex was steep during the first 4-6 stimuli but became gentler thereafter. In the initial phase, an increase in the reflex during the time before signals of C-fibers arrived at the spinal cord was observed in experiments using high-frequency stimulation, suggesting that wind-up was caused by inputs of A-fibers without the involvement of C-fibers. Magnetic and monopolar stimulations are minimally invasive and useful methods for observing the wind-up of the flexion reflex in humans. Monopolar stimulation is convenient because it does not require special equipment. There is at least a partial mechanism underlying the wind-up of the flexion reflex that does not require C-fibers.

3.
Neuroscience ; 468: 168-175, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34147564

ABSTRACT

Although conditioned pain modulation (CPM) is considered to represent descending pain inhibitory mechanisms triggered by noxious stimuli applied to a remote area, there have been no previous studies comparing CPM between pain and tactile systems. In this study, we compared CPM between the two systems objectively using blink reflexes. Intra-epidermal electrical stimulation (IES) and transcutaneous electrical stimulation (TS) were applied to the right skin area over the supraorbital foramen to evoke a nociceptive or a non-nociceptive blink reflex, respectively, in 15 healthy males. In the test session, IES or TS were applied six times and subjects reported the intensity of each stimulus on a numerical rating scale (NRS). Blink reflexes were measured using electromyography (R2). The first and second sessions were control sessions, while in the third session, the left hand was immersed in cold water at 10 °C as a conditioning stimulus. The magnitude of the R2 blink and NRS scores were compared among the sessions by 2-way ANOVA. Both the NRS score and nociceptive R2 were significantly decreased in the third session for IES, with a significant correlation between the two variables; whereas, TS-induced non-nociceptive R2 did not change among the sessions. Although the conditioning stimulus decreased the NRS score for TS, the CPM effect was significantly smaller than that for IES (p = 0.002). The present findings suggest the presence of a pain-specific CPM effect to a heterotopic noxious stimulus.


Subject(s)
Blinking , Transcutaneous Electric Nerve Stimulation , Electric Stimulation , Humans , Male , Nociception , Pain , Pain Measurement , Pain Threshold , Reflex
SELECTION OF CITATIONS
SEARCH DETAIL