Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Cogn Neurosci ; 32(3): 484-496, 2020 03.
Article in English | MEDLINE | ID: mdl-31682567

ABSTRACT

There is growing evidence that vestibular information is not only involved in reflexive eye movements and the control of posture but it also plays an important role in higher order cognitive processes. Previous behavioral research has shown that concomitant vestibular stimuli influence performance in tasks that involve imagined self-rotations. These results suggest that imagined and perceived body rotations share common mechanisms. However, the nature and specificity of these effects remain largely unknown. Here, we investigated the neural mechanisms underlying this vestibulocognitive interaction. Participants (n = 20) solved an imagined self-rotation task during caloric vestibular stimulation. We found robust main effects of caloric vestibular stimulation in the core region of the vestibular network, including the rolandic operculum and insula bilaterally, and of the cognitive task in parietal and frontal regions. Interestingly, we found an interaction of stimulation and task in the left inferior parietal lobe, suggesting that this region represents the modulation of imagined body rotations by vestibular input. This result provides evidence that the inferior parietal lobe plays a crucial role in the neural integration of mental and physical body rotation.


Subject(s)
Body Image , Brain/physiology , Imagination/physiology , Vestibule, Labyrinth/physiology , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Reaction Time , Young Adult
2.
Atten Percept Psychophys ; 82(4): 1987-1999, 2020 May.
Article in English | MEDLINE | ID: mdl-31898068

ABSTRACT

Perceptual learning, the ability to improve the sensitivity of sensory perception through training, has been shown to exist in all sensory systems but the vestibular system. A previous study found no improvement of passive self-motion thresholds in the dark after intense direction discrimination training of either yaw rotations (stimulating semicircular canals) or y-translation (stimulating otoliths). The goal of the present study was to investigate whether perceptual learning of self-motion in the dark would occur when there is a simultaneous otolith and semicircular canal input, as is the case with roll tilt motion stimuli. Blindfolded subjects (n = 10) trained on a direction discrimination task with 0.2-Hz roll tilt motion stimuli (9 h of training, 1,800 trials). Before and after training, motion thresholds were measured in the dark for the trained motion and for three transfer conditions. We found that roll tilt sensitivity in the 0.2-Hz roll tilt condition was increased (i.e., thresholds decreased) after training but not for controls who were not exposed to training. This is the first demonstration of perceptual learning of passive self-motion direction discrimination in the dark. The results have potential therapeutic relevance as 0.2-Hz roll thresholds have been associated with poor performance on a clinical balance test that has been linked to more than a fivefold increase in falls.


Subject(s)
Motion Perception , Humans , Learning , Motion , Otolithic Membrane , Visual Perception
3.
J Neurol ; 264(Suppl 1): 74-80, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28361254

ABSTRACT

Vestibular cognition is a growing field of interest and relatively little is known about the underlying mechanisms. We tested the effect of prior beliefs about the relative probability (50:50 vs. 80:20) of motion direction (yaw rotation) using a direction discrimination task. We analyzed choices individually with a logistic regression model and together with response times using a cognitive process model. The results show that self-motion perception is altered by prior belief, leading to a shift of the psychometric function, without a loss of sensitivity. Hierarchical drift diffusion analysis showed that at the group level, prior belief manifests itself as an offset to the drift criterion. However, individual model fits revealed that participants vary in how they use cognitive information in perceptual decision making. At the individual level, the response bias induced by a prior belief resulted either in a change in starting point (prior to evidence accumulation) or drift rate (during evidence accumulation). Participants incorporate prior belief in a self-motion discrimination task, albeit in different ways.


Subject(s)
Afferent Pathways/physiology , Cognition/physiology , Decision Making/physiology , Motion Perception/physiology , Vestibule, Labyrinth/physiology , Adult , Bayes Theorem , Bias , Discrimination, Psychological , Female , Humans , Male , Rotation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL