Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Chemistry ; 29(34): e202300941, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37067467

ABSTRACT

A variety of biaryl polyketides exhibit remarkable bioactivities. However, their synthetic accessibility is often challenging. Herein, the enantioselective preparation and synthetic application of an axially chiral 2,2'-biphenol building block is outlined that represents a common motif of these intriguing natural products. Based on the highly regioselective and scalable bromination of a phenol precursor, a coupling process by Lipshutz cuprate oxidation was developed. A copper-mediated deracemization strategy proved to be superior to derivatization or kinetic resolution approaches. Key steps in the overall building block synthesis were rationalized through DFT studies. Utilizing the 2,2'-biphenol, a highly diastereoselective five step synthesis of formerly unknown (+)-di-epi-gonytolide A was developed, thus showcasing the building block's general potential for the synthesis of natural products and their derivatives. En route, the first enantioselective construction of a chromone dimer intermediate was established.

2.
Org Lett ; 26(25): 5258-5262, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38885455

ABSTRACT

The application of cyclic diaryliodonium salts in the synthesis of bioactive natural product analogues was demonstrated. Axially chiral biaryls were obtained via the enantioselective ring opening of cyclic diaryliodonium salts. Regioselective borylation was key in accessing both enantiomers of a biphenol key intermediate in eight steps overall. 8,8″-Amino biflavones were synthesized, their bioactivity profiled, and the eutomer identified. The structure-activity relationship was probed.

3.
Front Chem ; 12: 1406307, 2024.
Article in English | MEDLINE | ID: mdl-39104777

ABSTRACT

Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an apicomplexan parasite that infects approximately a third of the world's human population. This disease can cause serious complications during pregnancy and can be fatal in immunocompromised hosts. The current treatment options for toxoplasmosis face several limitations. Thus, to address the urgent medical need for the discovery of novel anti-toxoplasma potential drug candidates, our research focused on exploring a series of monomeric and dimeric chalcones, polyphenolic molecules belonging to the class of flavonoids. Chalcones 1aa-1bg and axially chiral A-A'-connected bichalcones 2aa-2bg were evaluated in vitro against the proliferation of the parasite in a cell-based assay. A comparison of the efficacy demonstrated that, in several cases, bichalcones exhibited increased bioactivity compared to their corresponding monomeric counterparts. Among these compounds, a bichalcone with a phenyl substituent and a methyl moiety 2ab showed the most potent and selective inhibitory activity in the nanomolar range. Both enantiomers of this bichalcone were synthesized using an axially chiral biphenol building block. The biaryl bond was forged using Suzuki cross-coupling in water under micellar catalysis conditions. Separation of the atropisomers of this biphenol building block was conducted by chiral HPLC on a preparative scale. The biological evaluation of the enantiomers revealed that the (R a)-enantiomer (R a)-2ab is the eutomer. These studies suggest that bichalcones may be important drug candidates for further in vivo evaluations for the discovery of anti-toxoplasma drugs.

4.
ACS Omega ; 8(44): 41816-41834, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970025

ABSTRACT

In this work, we report the scalable and modular synthesis of a library of 55 monomeric and dimeric flavonoids including 14 8,8'-biflavones. The sterically demanding tetra-ortho-substituted axis of an acetophenone dimer key intermediate was constructed in a regioselective manner using Fe-mediated oxidative coupling. This step was systematically optimized and performed on up to multigram scale. The biological activities of this compound library were evaluated, including cytotoxicity against healthy and malignant human cell lines, antimicrobial activity against the apicomplexan parasite Toxoplasma gondii, and antioxidant capacity. A marked increase in activity for the 8,8'-dimeric structures compared to that of their monomeric counterparts was observed. Several biflavones were identified with high selectivity indices (low cytotoxicity and high antiprotozoal activity), showing that this class of natural products may serve as lead structures for further investigations.

SELECTION OF CITATIONS
SEARCH DETAIL