ABSTRACT
Since the emergence of the COVID-19 pandemic, the effects of SARS-CoV-2 have been extensively researched. While much is already known about the acute phase of the infection, increasing attention has turned to the prolonged symptoms experienced by a subset of individuals, commonly referred to as long COVID-19 patients. This study aims to delve deeper into the immune landscape of patients with prolonged symptoms by implementing single-cell mRNA analysis. A 71-year-old COVID-19 patient presenting with persistent viral pneumonia was recruited, and peripheral blood samples were taken at 3 and 2 years post-acute infection onset. Patients and control peripheral blood mononuclear cells (PBMCs) were isolated and single-cell sequenced. Immune cell population identification was carried out using the ScType script. Three months post-COVID-19 patients' PBMCs contained a significantly larger immature neutrophil population compared to 2-year and control samples. However, the neutrophil balance shifted towards a more mature profile after 18 months. In addition, a notable increase in the CD8+ NKT-like cells could be observed in the 3-month patient sample as compared to the later one and control. The subsequent change in these cell populations over time may be an indicator of an ongoing failure to clear the SARS-CoV-2 infection and, thus, lead to chronic COVID-19 complications.
ABSTRACT
Numerous type 2 diabetes (T2D) polygenic risk scores (PGSs) have been developed to predict individuals' predisposition to the disease. An independent assessment and verification of the best-performing PGS are warranted to allow for a rapid application of developed models. To date, only 3% of T2D PGSs have been evaluated. In this study, we assessed all (n = 102) presently published T2D PGSs in an independent cohort of 3718 individuals, which has not been included in the construction or fine-tuning of any T2D PGS so far. We further chose the best-performing PGS, assessed its performance across major population principal component analysis (PCA) clusters, and compared it with newly developed population-specific T2D PGS. Our findings revealed that 88% of the published PGSs were significantly associated with T2D; however, their performance was lower than what had been previously reported. We found a positive association of PGS improvement over the years (p-value = 8.01 × 10-4 with PGS002771 currently showing the best discriminatory power (area under the receiver operating characteristic (AUROC) = 0.669) and PGS003443 exhibiting the strongest association PGS003443 (odds ratio (OR) = 1.899). Further investigation revealed no difference in PGS performance across major population PCA clusters and when compared with newly developed population-specific PGS. Our findings revealed a positive trend in T2D PGS performance, consistently identifying high-T2D-risk individuals in an independent European population.
Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Genetic Risk Score , Genotype , Odds Ratio , Principal Component AnalysisABSTRACT
Long COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), can manifest as long-term symptoms in multiple organ systems, including respiratory, cardiovascular, neurological, and metabolic systems. In patients with severe COVID-19, immune dysregulation is significant, and the relationship between metabolic regulation and immune response is of great interest in determining the pathophysiological mechanisms. We aimed to characterize the metabolomic footprint of recovering severe COVID-19 patients at three consecutive timepoints and compare metabolite levels to controls. Our findings add proof of dysregulated amino acid metabolism in the acute phase and dyslipidemia, glycoprotein level alterations, and energy metabolism disturbances in severe COVID-19 patients 3-4 months post-hospitalization.
Subject(s)
COVID-19 , Dyslipidemias , Humans , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Energy MetabolismABSTRACT
The gut microbiome plays a pivotal role in the modulation of host responses during viral infections, and recent studies have underscored its significance in the context of coronavirus disease 2019 (COVID-19). We aimed to investigate the dynamics and compositional changes in the gut microbiome of COVID-19 patients, addressing both the acute phase and the recovery process, with a particular focus on the emergence of post-COVID-19 conditions. Involving 146 COVID-19 patients and 110 healthy controls, this study employed a shotgun metagenomics approach for cross-sectional and longitudinal analyses with one- and three-month follow-ups. We observed a decline in taxonomic diversity among hospitalized COVID-19 patients compared to healthy controls, while a subsequent increase in alpha diversity was shown during the recovery process. A notable contribution of Enterococcus faecium was identified in the acute phase of the infection, accompanied by an increasing abundance of butyrate-producing bacteria (e.g., Roseburia, Lachnospiraceae_unclassified) during the recovery period. We highlighted a protective role of the Prevotella genus in the long-term recovery process and suggested a potential significance of population-specificity in the early gut microbiome markers of post-acute COVID-19 syndrome. Our study represents distinctive gut microbiome signatures in COVID-19, with potential diagnostic and prognostic implications, pinpointing potential modulators of the disease progression.
Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Cross-Sectional Studies , Post-Acute COVID-19 Syndrome , Patients , ClostridialesABSTRACT
Background and Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 is the new coronavirus that caused the coronavirus disease 2019 (COVID-19) outbreak. Studies have increasingly reported the involvement of organs outside the respiratory system, including the gastrointestinal tract. Data on the association between COVID-19 and ulcerative colitis (UC) are lacking. Materials and Methods: In this one-centre cross-sectional study, 49 patients with UC from the Riga East Clinical University Hospital outpatient clinic were included from June 2021 to December 2021. The patients were divided into two groups according to their history of a confirmed positive or negative COVID-19 status. Data on their lifestyle, diet, and medications and the food supplements used by the patients were collected during interviews and analysed using the R 4.2.1 software. Results: Out of 49 patients, 33 (63.3%) were male and 13 (36.7%) were female, with a mean age of 32.33 ± 8.6 years. Fourteen patients (28.6%) had a confirmed COVID-19 infection in the last year. The most common COVID-19-related symptoms were a fever and rhinorrhoea. A third of patients followed the inflammatory bowel disease diet (16; 32.7%); out of these patients, 12 (34.3%) did not contract COVID-19 (OR: 0.78 (0.18; 2.98), p > 0.05). In the COVID-19-positive group, the majority of patients did not use vitamin D (11; 79% vs. 3; 21%, (OR: 0.38 (0.07; 1.51), p = 0.28) or probiotics (11; 78.6% vs. 3; 21.4%, OR: 1.33 (0.23; 6.28), p = 0.7). In the COVID-19-positive group, most patients did not smoke (12; 85.7% vs. 2; 14.3%, p = 0.475) and did not use alcohol (9; 64.3% vs. 5; 35.7%, OR: 0.63 (0.16; 2.57), p = 0.5). Most of the patients who participated in sports activities were COVID-negative (18; 51.4% vs. 6; 42.9%, p = 0.82). Conclusions: There were no statistically significant differences in the use of food supplements, probiotics, or vitamins; the lifestyle habits; or the COVID-19 status in patients with UC.
Subject(s)
COVID-19 , Colitis, Ulcerative , Humans , Male , Female , Young Adult , Adult , SARS-CoV-2 , Colitis, Ulcerative/complications , Colitis, Ulcerative/epidemiology , Cross-Sectional Studies , Life Style , VitaminsABSTRACT
BACKGROUND & AIMS: A genome-wide significant association between anti-Helicobacter pylori (H pylori) IgG titers and Toll-like receptor (TLR1/6/10) locus on 4p14 was demonstrated for individuals of European ancestry, but not uniformly replicated. We re-investigated this association in an updated genome-wide association study (GWAS) meta-analysis for populations with low gastric cancer incidence, address potential causes of cohort heterogeneity, and explore functional implications of genetic variation at the TLR1/6/10 locus. METHODS: The dichotomous GWAS (25% individuals exhibiting highest anti-H pylori IgG titers vs remaining 75%) included discovery and replication sampls of, respectively, n = 15,685 and n = 9676, all of European ancestry. Longitudinal analysis of serologic data was performed on H pylori-eradicated subjects (n = 132) and patients under surveillance for premalignant gastric lesions (n = 107). TLR1/6/10 surface expression, TLR1 mRNA, and cytokine levels were measured in leukocyte subsets of healthy subjects (n = 26) genotyped for TLR1/6/10 variants. RESULTS: The association of the TLR1/6/10 locus with anti-H pylori IgG titers (rs12233670; ß = -0.267 ± SE 0.034; P = 4.42 × 10-15) presented with high heterogeneity and failed replication. Anti-H pylori IgG titers declined within 2-4 years after eradication treatment (P = 0.004), and decreased over time in patients with premalignant gastric lesions (P < 0.001). Variation at the TLR1/6/10 locus affected TLR1-mediated cytokine production and TLR1 surface expression on monocytes (P = 0.016) and neutrophils (P = 0.030), but not mRNA levels. CONCLUSIONS: The association between anti-H pylori IgG titers and TLR1/6/10 locus was not replicated across cohorts, possibly owing to dependency of anti-H pylori IgG titers on therapy, clearance, and antibody decay. H pylori-mediated immune cell activation is partly mediated via TLR1 signaling, which in turn is affected by genetic variation.
Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Toll-Like Receptor 1/genetics , Antibodies, Bacterial , Cytokines/genetics , Genome-Wide Association Study , Helicobacter Infections/diagnosis , Helicobacter Infections/drug therapy , Helicobacter Infections/genetics , Humans , Immunoglobulin G , Stomach Neoplasms/geneticsABSTRACT
Despite rapid improvements in the accessibility of whole-genome sequencing (WGS), understanding the extent of human genetic variation is limited by the scarce availability of genome sequences from underrepresented populations. Developing the population-scale reference database of Latvian genetic variation may fill the gap in European genomes and improve human genomics research. In this study, we analysed a high-coverage WGS dataset comprising 502 individuals selected from the Genome Database of the Latvian Population. An assessment of variant type, location in the genome, function, medical relevance, and novelty was performed, and a population-specific imputation reference panel (IRP) was developed. We identified more than 18.2 million variants in total, of which 3.3% so far are not represented in gnomAD and dbSNP databases. Moreover, we observed a notable though distinct clustering of the Latvian cohort within the European subpopulations. Finally, our findings demonstrate the improved performance of imputation of variants using the Latvian population-specific reference panel in the Latvian population compared to established IRPs. In summary, our study provides the first WGS data for a regional reference genome that will serve as a resource for the development of precision medicine and complement the global genome dataset, improving the understanding of human genetic variation.
Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Latvia , Whole Genome Sequencing , Genome, Human , Genetic Variation , GenotypeABSTRACT
BACKGROUND: Pituitary adenomas (PA) have an increased potential for relapse in one to 5 years after resection. In this study, we investigated the genetic differences in genomic DNA of primary and rapidly recurrent tumours in the same patient to explain the causality mechanisms of PA recurrence. CASE PRESENTATION: The patient was a 69-year-old female with non-functional pituitary macroadenoma with extension into the left cavernous sinus (Knosp grade 2) who underwent craniotomy and partial resection in August 2010. Two years later, the patient had prolonged tumour growth with an essential suprasellar extension (Knosp grade 2), and a second craniotomy with partial tumour resection was performed in September 2012. In both tumours, the KI-67 level was below 1.5%. Exome sequencing via semiconductor sequencing of patient germline DNA and somatic DNA from both tumours was performed. Tmap alignment and Platypus variant calling were performed followed by variant filtering and manual review with IGV software. We observed an increased load of missense variants in the recurrent PA tumour when compared to the original tumour. The number of detected variants increased from ten to 26 and potential clonal expansion of four variants was observed. Additionally, targeted SNP analysis revealed five rare missense SNPs with a potential impact on the function of the encoded proteins. CONCLUSIONS: In this case study, an SNP located in HRAS is the most likely candidate inducing rapid PA progression. The relapsed PA tumour had a higher variation load and fast tumour recurrence in this patient could be caused by clonal expansion of the leftover tumour tissue.
Subject(s)
Adenoma/genetics , Genetic Markers , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Pituitary Neoplasms/genetics , Polymorphism, Single Nucleotide , Adenoma/pathology , Aged , Female , Humans , Pituitary Neoplasms/pathology , PrognosisABSTRACT
BACKGROUND: The Genome Database of the Latvian Population (LGDB) is a national biobank that collects, maintains, and processes health information, data, and biospecimens collected from representatives of the Latvian population. These specimens serve as a foundation for epidemiological research and prophylactic and therapeutic purposes. METHODS: Participant recruitment and biomaterial and data processing were performed according to specifically designed standard protocols, taking into consideration international quality requirements. Legal and ethical aspects, including broad informed consent and personal data protection, were applied according to legal norms of the Republic of Latvia. RESULTS: Since its start in 2006, the LGDB is comprised of biosamples and associated phenotypic and clinical information from over 31,504 participants, constituting approximately 1.5% of the Latvian population. The LGDB represents a mixed-design biobank and includes participants from the general population as well as disease-based cohorts. The standard set of biosamples stored in the LGDB consists of DNA, plasma, serum, and white blood cells; in some cohorts, these samples are complemented by cancer biopsies and microbiome and urine samples. The LGDB acts as a core structure for the Latvian Biomedical Research and Study Centre (BMC), representing the national node of Latvia in Biobanking and BioMolecular resources Research Infrastructure - European Research Infrastructure Consortium (BBMRI-ERIC). CONCLUSIONS: The development of the LGDB has enabled resources for biomedical research and promoted genetic testing in Latvia. Further challenges of the LGDB are the enrichment and harmonization of collected biosamples and data, the follow-up of selected participant groups, and continued networking and participation in collaboration projects.
Subject(s)
Biological Specimen Banks/organization & administration , Databases, Genetic , Genome , Adolescent , Adult , Aged , Aged, 80 and over , Biomedical Research , Female , Goals , Humans , Latvia , Male , Middle Aged , Young AdultABSTRACT
Members of the hydroxycarboxylic acid receptor (HCA1-3) family are mainly expressed in adipocytes and immune cells. HCA2 ligand, niacin, has been used for decades as lipid-modifying drug. Recent studies suggest that HCA ligands can be involved in the modulation of inflammatory processes. In this study, we evaluated the effects of HCA1-3 ligands on adipose differentiation and cytokine expression in human adipocytes and macrophages. Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes were induced to differentiate into adipocytes for 8 d in the presence or absence of HCA ligands and evaluated for lipid accumulation and adipogenic gene expression. The inhibitory effects of the ligands on the expression and production of cytokines were measured in lipopolysaccharide (LPS)-stimulated adipocytes and THP-1 macrophage cells. Preadipocytes treated with HCA ligands showed no changes in the capacity to differentiate into adipocytes and no significant alteration in peroxisome proliferator activated receptor γ (PPARγ) or its target gene expression. HCA2-3 ligands significantly downregulated LPS-induced expression of interleukin (IL)-6 (53-64%), tumor necrosis factor-α (TNF-α) (55-69%) and IL-8 (51-59%) in adipocytes and macrophages. IL-1ß inhibition (58-68%) by HCA2-3 ligands was observed only in adipocytes. Furthermore, LPS increased the expression of HCA2-3 in adipocytes and macrophages and this expression was decreased by treatment with their ligands. These results suggest that HCA ligands modulated LPS-mediated pro-inflammatory gene expression in both macrophages and adipocytes without affecting adipogenesis. Therefore, targeting HCA2 and HCA3 would be beneficial in treating inflammation conditions associated with atherosclerosis and obesity.
Subject(s)
Adipocytes/drug effects , Adipogenesis , Cytokines/metabolism , Inflammation/metabolism , Ligands , Macrophages/drug effects , Receptors, G-Protein-Coupled , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Atherosclerosis/pathology , Cells, Cultured , Gene Expression , Humans , Interleukin-1beta/genetics , Interleukin-6/metabolism , Lipid Metabolism/drug effects , Lipopolysaccharides , Macrophages/metabolism , Niacin , Obesity/pathology , PPAR gamma/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Novel series of compounds consisting of 2-amidocyclohex-1-ene carboxylate and phenyl parts which are connected by enyne (compounds 2a-f), but-1-yne (compounds 4a-j), and phenylethylene (compounds 5a-f) linkers as HCA2 full agonists were designed and their functional activity using cAMP assay and binding affinity using radioligand (3H-niacin) binding assay were evaluated. In general, compounds of all three series exhibit similar HCA2 binding and activation profile. However, the activity is strongly dependent on the substituent at the aromatic part of the structure. Among the structures evaluated, the highest affinity and potency in all series were exhibited by compounds containing 4-hydroxy and/or 2-chloro or 2-fluoro substituents. The most active compounds in the enyne and but-1-yne series in the cAMP assay are 2-fluoro,4-hydroxy and 2-chloro,4-hydroxy phenyl derivatives 2f, 4f, and 4g showing potency similar to the previously described 4-hydroxy-biphenyl analogue 5c.
Subject(s)
Cyclohexenes/pharmacology , Receptors, G-Protein-Coupled/agonists , Cyclohexenes/chemical synthesis , Cyclohexenes/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Receptors, Nicotinic , Structure-Activity RelationshipABSTRACT
BACKGROUND: Familial hypercholesterolemia (FH) is one of the commonest monogenic disorders, predominantly inherited as an autosomal dominant trait. When untreated, it results in early coronary heart disease. The vast majority of FH remains undiagnosed in Latvia. The identification and early treatment of affected individuals remain a challenge worldwide. Most cases of FH are caused by mutations in one of four genes, APOB, LDLR, PCSK9, or LDLRAP1. The spectrum of disease-causing variants is very diverse and the variation detection panels usually used in its diagnosis cover only a minority of the disease-causing gene variants. However, DNA-based tests may provide an FH diagnosis for FH patients with no physical symptoms and with no known family history of the disease. Here, we evaluate the use of targeted next-generation sequencing (NGS) to identify cases of FH in a cohort of patients with coronary artery disease (CAD) and individuals with abnormal low-density lipoprotein-cholesterol (LDL-C) levels. METHODS: We used targeted amplification of the coding regions of LDLR, APOB, PCSK9, and LDLRAP1, followed by NGS, in 42 CAD patients (LDL-C, 4.1-7.2 mmol/L) and 50 individuals from a population-based cohort (LDL-C, 5.1-9.7 mmol/L). RESULTS: In total, 22 synonymous and 31 nonsynonymous variants, eight variants in close proximity (10 bp) to intron-exon boundaries, and 50 other variants were found. We identified four pathogenic mutations (p.(Arg3527Gln) in APOB, and p.(Gly20Arg), p.(Arg350*), and c.1706-10G > A in LDLR) in seven patients (7.6 %). Three possible pathogenic variants were also found in four patients. CONCLUSION: NGS-based methods can be used to detect FH in high-risk individuals when they do not meet the defined clinical criteria.
Subject(s)
Cholesterol, LDL/genetics , High-Throughput Nucleotide Sequencing/methods , Hyperlipoproteinemia Type II/genetics , Mutation , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Apolipoprotein B-100/genetics , Cohort Studies , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Female , Genetics, Population , Humans , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/diagnosis , Latvia , Male , Middle Aged , Polymorphism, Single Nucleotide , Proprotein Convertase 9 , Proprotein Convertases/genetics , Receptors, LDL/genetics , Serine Endopeptidases/genetics , Young AdultSubject(s)
Colorectal Neoplasms , Microbiota , Early Detection of Cancer , Hemoglobins , Humans , Mass Screening , Occult BloodABSTRACT
2-(3-(Naphthalen-2-yl)propanamido)cyclohex-1-enecarboxylic acid and its 6-hydroxynaphthalen-2-yl analogue are well-known hydroxyl-carboxylic acid (HCA) receptor HCA2 agonists. A series of novel aryl derivatives of 2-amidocyclohex-1-ene carboxylic acid that contained rigidity elements, such as an E-double bond, triple bond, and trans or cis-substituted cyclopropane rings, instead of the saturated ethane linker in the amide part of the molecules were designed and synthesized, and the derivatives' potency for the activation of HCA1, HCA2, and HCA3 receptors by 3'-5'-cyclic adenosine monophosphate (cAMP) assay were evaluated. The SAR studies revealed that the rigidifying of appropriate molecules enabled modulation of the potency and selectivity of the HCA2 receptor activation.
Subject(s)
Acrylamides/pharmacology , Cyclohexanecarboxylic Acids/pharmacology , Receptors, G-Protein-Coupled/agonists , Acrylamides/chemical synthesis , Acrylamides/chemistry , Cell Line , Cyclohexanecarboxylic Acids/chemical synthesis , Cyclohexanecarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Receptors, Nicotinic , Structure-Activity RelationshipABSTRACT
Melanocortin 4 receptor (MC4R) is an important regulator of food intake and number of studies report genetic variations influencing the risk of obesity. Here we explored the role of common genetic variation from MC4R locus comparing with SNPs from gene FTO locus, as well as the frequency and functionality of rare MC4R mutations in cohort of 380 severely obese individuals (BMI > 39 kg/m(2)) and 380 lean subjects from the Genome Database of Latvian Population (LGDB). We found correlation for two SNPs--rs11642015 and rs62048402 in the fat mass and obesity-associated protein (FTO) with obesity but no association was detected for rs17782313 located in the MC4R locus in these severely obese individuals. We sequenced the whole gene MC4R coding region in all study subjects and found five previously known heterozygous non-synonymous substitutions V103I, I121T, S127L, V166I and I251L. Expression in mammalian cells showed that the S127L, V166I and double V103I/S127L mutant receptors had significantly decreased quantity at the cell surface compared to the wild type MC4R. We carried out detailed functional analysis of V166I that demonstrated that, despite low abundance in plasma membrane, the V166I variant has lower EC50 value upon αMSH activation than the wild type receptor, while the level of AGRP inhibition was decreased, implying that V166I cause hyperactive satiety signalling. Overall, this study suggest that S127L may be the most frequent functional MC4R mutation leading to the severe obesity in general population and provides new insight into the functionality of population based variants of the MC4R.
Subject(s)
Obesity/genetics , Proteins/genetics , Receptor, Melanocortin, Type 4/genetics , Aged , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Animals , Body Mass Index , Female , Heterozygote , Humans , Male , Middle Aged , Mutation, Missense , Obesity/pathology , Pedigree , Polymorphism, Single NucleotideABSTRACT
BACKGROUND AND OBJECTIVE: Additional loading doses and higher maintenance doses (MDs) have been used to overcome hyporesponsiveness of clopidogrel. We aimed to investigate whether genetic polymorphisms of two cytochromes (CYP2C19 and CYP2C9) and ABCB1 modify effect of such dose-adjustment strategy. MATERIALS AND METHODS: We enrolled 118 patients undergoing elective or acute percutaneous coronary intervention (PCI) with drug eluting stent (DES). Platelet reactivity index (PRI) was measured using the vasodilator-stimulated phosphoprotein (VASP) index and a cut-off value of ≥ 60% was defined as hyporesponsiveness. Polymorphism of two cytochromes (CYP2C19, CYP2C9) and gene ABCB1 were determined. In patients hyporesponsive to the initial LD the dose-adjustment was performed using up to 3 additional 600 mg LDs in order to achieve PRI <60%, and both 150 mg and 75 mg MD were tested at the follow-up. RESULTS: Patients with at least one CYP2C19*2 allele had higher baseline PRI after the initial LD (78.2 ± 13.1 vs. 65.3 ± 19.5, P=0.005). The PRI reduction with additional LD was significantly smaller in carriers of the CYP2C19*2 (25.2 ± 15.6 vs. 35.5 ± 16.8, P=0.025) and similar trend was observed with subsequent additional LDs. Both MDs were less effective in presence of CYP2C19*2. Target PRI was, however, more frequently achieved with higher MD even in presence of CYP2C19*2 (in 70.6% vs. 23.5% of hyporesponders, P=0.008). No such differences were observed for other polymorphisms. CONCLUSIONS: In patients hyporesponsive to a routine clopidogrel doses the potency of additional LD and higher MD of clopidogrel is compromised by presence of CYP2C19*2 allele. The dose-adjustment strategy is not affected by ABCB1 C3435T or CYP2C9 genotypes.
Subject(s)
Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C9/genetics , Drug-Eluting Stents , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors/administration & dosage , Ticlopidine/analogs & derivatives , ATP Binding Cassette Transporter, Subfamily B/genetics , Aged , Alleles , Cell Adhesion Molecules/blood , Clopidogrel , Dose-Response Relationship, Drug , Female , Humans , Male , Microfilament Proteins/blood , Middle Aged , Pharmacogenetics , Phosphoproteins/blood , Polymorphism, Genetic , Prospective Studies , Ticlopidine/administration & dosageABSTRACT
Introduction: Hereditary angioedema (HAE) is a rare, life-threatening autosomal dominant genetic disorder caused by a deficient and/or dysfunctional C1 esterase inhibitor (C1-INH) (type 1 and type 2) leading to recurrent episodes of edema. This study aims to explore HAE patients' metabolomic profiles and identify novel potential diagnostic biomarkers for HAE. The study also examined distinguishing HAE from idiopathic angioedema (AE). Methods: Blood plasma samples from 10 HAE (types 1/2) patients, 15 patients with idiopathic AE, and 20 healthy controls were collected in Latvia and analyzed using LC-MS based targeted metabolomics workflow. T-test and fold change calculation were used to identify metabolites with significant differences between diseases and control groups. ROC analysis was performed to evaluate metabolite based classification model. Results: A total of 33 metabolites were detected and quantified. The results showed that isovalerylcarnitine, cystine, and hydroxyproline were the most significantly altered metabolites between the disease and control groups. Aspartic acid was identified as a significant metabolite that could differentiate between HAE and idiopathic AE. The mathematical combination of metabolites (hydroxyproline * cystine)/(creatinine * isovalerylcarnitine) was identified as the diagnosis signature for HAE. Furthermore, glycine/asparagine ratio could differentiate between HAE and idiopathic AE. Conclusion: Our study identified isovalerylcarnitine, cystine, and hydroxyproline as potential biomarkers for HAE diagnosis. Identifying new biomarkers may offer enhanced prospects for accurate, timely, and economical diagnosis of HAE, as well as tailored treatment selection for optimal patient care.
Subject(s)
Angioedemas, Hereditary , Biomarkers , Metabolomics , Humans , Female , Male , Angioedemas, Hereditary/diagnosis , Angioedemas, Hereditary/blood , Adult , Biomarkers/blood , Metabolomics/methods , Middle Aged , Metabolome , Young Adult , Case-Control Studies , Complement C1 Inhibitor Protein/genetics , Complement C1 Inhibitor Protein/metabolism , AdolescentABSTRACT
Recent studies highlight the presence of bacterial sequences in the human blood, suggesting potential clinical significance for circulating microbial signatures. These sequences could presumably serve in the diagnosis, prediction, or monitoring of various health conditions. Ensuring the similarity of samples before bacterial analysis is crucial, especially when combining samples from different biobanks prepared under varying conditions (such as different DNA extraction kits, centrifugation conditions, blood collection tubes, etc.). In this study, we aimed to analyze the impact of different sample collection and nucleic acid extraction criteria (blood collection tube, centrifugation, input volume, and DNA extraction kit) on circulating bacterial composition. Blood samples from four healthy individuals were collected into three different sample collection tubes: K2EDTA plasma tube, sodium citrate plasma tube, and gel tube for blood serum. Tubes were centrifugated at standard and double centrifugation conditions. DNA extraction was performed using 100, 200, and 500 µL plasma/serum input volumes. DNA extraction was performed using three different isolation kits: Norgen plasma/serum cell-free circulating DNA purification micro kit, Applied Biosystems MagMAX cell-free DNA isolation kit, and Qiagen QIAamp MinElute cell-free circulating DNA mini kit. All samples were subjected to 16S rRNA V1-V2 library preparation and sequencing. In total, 216 DNA and 18 water control samples were included in the study. According to PERMANOVA, PCoA, Mann-Whitney, and FDR tests the effect of the DNA extraction kit on the microbiota composition was the greatest, whereas the type of blood collection tube, centrifugation type, and sample input volume for the extraction had minor effects. Samples extracted with the Norgen DNA extraction kit were enriched with Gram-negative bacteria, whereas samples extracted with the Qiagen and MagMAX kits were enriched with Gram-positive bacteria. Bacterial profiles of samples prepared with the Qiagen and MagMAX DNA extraction kits were more similar, whereas samples prepared with the Norgen DNA extraction kit were significantly different from other groups.
Subject(s)
Biological Specimen Banks , Cell-Free Nucleic Acids , DNA, Bacterial , RNA, Ribosomal, 16S , Humans , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/blood , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/isolation & purification , Plasma/chemistry , Plasma/microbiology , Serum/chemistry , Serum/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Specimen Handling/methods , Blood Specimen Collection/methods , Sequence Analysis, DNA/methodsABSTRACT
The human gut teems with a diverse ecosystem of microbes, yet non-bacterial portions of that community are overlooked in studies of metabolic diseases firmly linked to gut bacteria. Type 2 diabetes mellitus (T2D) is associated with compositional shifts in the gut bacterial microbiome and the mycobiome, the fungal portion of the microbiome. However, whether T2D and/or metformin treatment underpins fungal community changes is unresolved. To differentiate these effects, we curated a gut mycobiome cohort spanning 1,000 human samples across five countries and validated our findings in a murine experimental model. We use Bayesian multinomial logistic normal models to show that T2D and metformin both associate with shifts in the relative abundance of distinct gut fungi. T2D is associated with shifts in the Saccharomycetes and Sordariomycetes fungal classes, while the genera Fusarium and Tetrapisipora most consistently associate with metformin treatment. We confirmed the impact of metformin on individual gut fungi by administering metformin to healthy mice. Thus, metformin and T2D account for subtle, but significant and distinct variation in the gut mycobiome across human populations. This work highlights for the first time that metformin can confound associations of gut fungi with T2D and warrants the need to consider pharmaceutical interventions in investigations of linkages between metabolic diseases and gut microbial inhabitants. IMPORTANCE: This is the largest to-date multi-country cohort characterizing the human gut mycobiome, and the first to investigate potential perturbations in gut fungi from oral pharmaceutical treatment. We demonstrate the reproducible effects of metformin treatment on the human and murine gut mycobiome and highlight a need to consider metformin as a confounding factor in investigations between type 2 diabetes mellitus and the gut microbial ecosystem.