Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Cell Physiol ; 234(4): 4432-4444, 2019 04.
Article in English | MEDLINE | ID: mdl-30256393

ABSTRACT

The pathophysiology of human immunodeficiency virus (HIV)-associated cardiomyopathy remains uncertain. We used HIV-1 transgenic (Tg26) mice to explore mechanisms by which HIV-related proteins impacted on myocyte function. Compared to adult ventricular myocytes isolated from nontransgenic (wild type [WT]) littermates, Tg26 myocytes had similar mitochondrial membrane potential (ΔΨ m ) under normoxic conditions but lower Δ Ψ m after hypoxia/reoxygenation (H/R). In addition, Δ Ψ m in Tg26 myocytes failed to recover after Ca 2+ challenge. Functionally, mitochondrial Ca 2+ uptake was severely impaired in Tg26 myocytes. Basal and maximal oxygen consumption rates (OCR) were lower in normoxic Tg26 myocytes, and further reduced after H/R. Complex I subunit and ATP levels were lower in Tg26 hearts. Post-H/R, mitochondrial superoxide (O 2•- ) levels were higher in Tg26 compared to WT myocytes. Overexpression of B-cell lymphoma 2-associated athanogene 3 (BAG3) reduced O 2•- levels in hypoxic WT and Tg26 myocytes back to normal. Under normoxic conditions, single myocyte contraction dynamics were similar between WT and Tg26 myocytes. Post-H/R and in the presence of isoproterenol, myocyte contraction amplitudes were lower in Tg26 myocytes. BAG3 overexpression restored Tg26 myocyte contraction amplitudes to those measured in WT myocytes post-H/R. Coimmunoprecipitation experiments demonstrated physical association of BAG3 and the HIV protein Tat. We conclude: (a) Under basal conditions, mitochondrial Ca 2+ uptake, OCR, and ATP levels were lower in Tg26 myocytes; (b) post-H/R, Δ Ψ m was lower, mitochondrial O 2•- levels were higher, and contraction amplitudes were reduced in Tg26 myocytes; and (c) BAG3 overexpression decreased O 2•- levels and restored contraction amplitudes to normal in Tg26 myocytes post-H/R in the presence of isoproterenol.


Subject(s)
Cardiomyopathies/metabolism , Energy Metabolism , HIV Infections/complications , HIV-1/genetics , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Cardiomyopathies/virology , Cell Hypoxia , Cells, Cultured , Disease Models, Animal , HIV Infections/virology , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Heart/virology , Myocardial Contraction , Myocytes, Cardiac/virology , Oxidation-Reduction , Oxidative Stress , Oxygen Consumption , Reactive Oxygen Species/metabolism , Signal Transduction , Ventricular Function, Left
2.
J Cell Physiol ; 233(2): 748-758, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28493473

ABSTRACT

Cardiovascular disease remains a leading cause of morbidity and mortality in HIV-positive patients, even in those whose viral loads are well controlled with antiretroviral therapy. However, the underlying molecular events responsible for the development of cardiac disease in the setting of HIV remain unknown. The HIV-encoded Tat protein plays a critical role in the activation of HIV gene expression and profoundly impacts homeostasis in both HIV-infected cells and uninfected cells that have taken up released Tat via a bystander effect. Since cardiomyocyte function, including excitation-contraction coupling, greatly depends on energy provided by the mitochondria, in this study, we performed a series of experiments to assess the impact of Tat on mitochondrial function and bioenergetics pathways in a primary cell culture model derived from neonatal rat ventricular cardiomyocytes (NRVCs). Our results show that the presence of Tat in cardiomyocytes is accompanied by a decrease in oxidative phosphorylation, a decline in the levels of ATP, and an accumulation of reactive oxygen species (ROS). Tat impairs the uptake of mitochondrial Ca2+ ([Ca2+ ]m ) and the electrophysiological activity of cardiomyocytes. Tat also affects the protein clearance pathway and autophagy in cardiomyocytes under stress due to hypoxia-reoxygenation conditions. A reduction in the level of ubiquitin along with dysregulated degradation of autophagy proteins including SQSTM1/p62 and a reduction of LC3 II were detected in cardiomyocytes harboring Tat. These results suggest that, by targeting mitochondria and protein quality control, Tat significantly impacts bioenergetics and autophagy resulting in dysregulation of cardiomyocyte health and homeostasis.


Subject(s)
Energy Metabolism , HIV-1/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Autophagy , Calcium/metabolism , Calcium Channels/metabolism , Cell Hypoxia , Cells, Cultured , Host-Pathogen Interactions , Membrane Potentials , Microtubule-Associated Proteins/metabolism , Mitochondria, Heart/virology , Mitophagy , Myocytes, Cardiac/virology , Oxidative Phosphorylation , Primary Cell Culture , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/metabolism , Signal Transduction , Time Factors
3.
J Cell Physiol ; 232(4): 797-805, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27381181

ABSTRACT

Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Animals , Apoptosis/drug effects , Autophagy/drug effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Line , Energy Metabolism , Gene Knockdown Techniques , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Myocytes, Cardiac/drug effects , Proteasome Inhibitors/pharmacology , Protein Transport/drug effects , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases/metabolism
4.
J Cell Biochem ; 117(8): 1813-21, 2016 08.
Article in English | MEDLINE | ID: mdl-26729625

ABSTRACT

Bag5 is a member of the BAG family of molecular chaperone regulators and is unusual in that it consists of five BAG domains, which function as modulators of chaperone activity. Bag family proteins play a key role in cellular as well as in cardiac function and their differential expression is reported in heart failure. In this study, we examined the importance of a Bag family member protein, Bag5, in cardiomyocytes during endoplasmic reticulum (ER) stress. We found that expression of Bag5 in cardiomyocytes is significantly increased with the induction of ER stress in a time dependent manner. We have taken gain-in and loss-of functional approaches to characterize Bag5 protein function in cardiomyocytes. Adenoviral mediated expression of Bag5 significantly decreased cell death as well as improved cellular viability in ER stress. Along with this, ER stress-induced CHOP protein expression is significantly decreased in cells that overexpress Bag5. Conversely, we found that siRNA-mediated knockdown of Bag5 caused cell death, increased cytotoxicity, and decreased cellular viability in cardiomyocytes. Mechanistically, we found that Bag5 protein expression is significantly increased in the ER during ER stress and that this in turn modulates GRP78 protein stability and reduces ER stress. This study suggests that Bag5 is an important regulator of ER function and so could be exploited as a tool to improve cardiomyocyte function under stress conditions. J. Cell. Biochem. 117: 1813-1821, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Heat-Shock Proteins/metabolism , Myocytes, Cardiac/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Heat-Shock Proteins/genetics , Protein Stability , Rats , Rats, Sprague-Dawley
5.
J Cell Physiol ; 230(4): 831-41, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25204229

ABSTRACT

Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associates with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Glioma/metabolism , Membrane Proteins/metabolism , Molecular Chaperones/metabolism , Beclin-1 , Cells, Cultured , HSP70 Heat-Shock Proteins/metabolism , Humans , Proteasome Endopeptidase Complex/metabolism
6.
Heart Fail Rev ; 20(4): 423-34, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25925243

ABSTRACT

BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Autophagy/genetics , Heart Failure/genetics , Animals , Heart , Humans , Mutation
7.
J Cell Physiol ; 229(11): 1697-702, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24623017

ABSTRACT

The most common cause of dilated cardiomyopathy and heart failure (HF) is ischemic heart disease; however, in a third of all patients the cause remains undefined and patients are diagnosed as having idiopathic dilated cardiomyopathy (IDC). Recent studies suggest that many patients with IDC have a family history of HF and rare genetic variants in over 35 genes have been shown to be causative of disease. We employed whole-exome sequencing to identify the causative variant in a large family with autosomal dominant transmission of dilated cardiomyopathy. Sequencing and subsequent informatics revealed a novel 10-nucleotide deletion in the BCL2-associated athanogene 3 (BAG3) gene (Ch10:del 121436332_12143641: del. 1266_1275 [NM 004281]) that segregated with all affected individuals. The deletion predicted a shift in the reading frame with the resultant deletion of 135 amino acids from the C-terminal end of the protein. Consistent with genetic variants in genes encoding other sarcomeric proteins there was a considerable amount of genetic heterogeneity in the affected family members. Interestingly, we also found that the levels of BAG3 protein were significantly reduced in the hearts from unrelated patients with end-stage HF undergoing cardiac transplantation when compared with non-failing controls. Diminished levels of BAG3 protein may be associated with both familial and non-familial forms of dilated cardiomyopathy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Cardiomyopathy, Dilated/genetics , Mutation/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Base Sequence , Family , Female , Heart Failure/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , Pedigree , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion
8.
JACC Basic Transl Sci ; 1(7): 647-656, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28164169

ABSTRACT

OBJECTIVES: The present study was undertaken to test the hypothesis that gene delivery of BCL2-Associated Athanogene 3 (BAG3) to the heart of mice with left ventricular dysfunction secondary to a myocardial infarction could enhance cardiac performance. BACKGROUND: BAG3 is a 575 amino acid protein that has pleotropic functions in the cell including pro-autophagy and anti-apoptosis. Mutations in BAG3 have been associated with both skeletal muscle dysfunction and familial dilated cardiomyopathy and BAG3 levels are diminished in non-familial heart failure. METHODS: Eight-week-old C57/BL6 mice underwent ligation of the left coronary artery (MI) or sham surgery (Sham). Eight weeks later, mice in both groups were randomly assigned to receive either a retro-orbital injection of rAAV9-BAG3 (MI-BAG3 or Sham-BAG3) or rAAV9-GFP (MI-GFP or Sham GFP). Mice were sacrificed at 3 weeks post-injection and myocytes were isolated from the left ventricle. RESULTS: MI-BAG3 mice demonstrated a significantly (p < 0.0001) higher left ventricular ejection fraction (LVEF) 9 days after rAAV9-BAG3 injection with further improvement in LVEF, fractional shortening and stroke volume at 3 weeks post-injection without changes in LV mass or LV volume. Injection of rAAV9-BAG3 had no effect on LVEF in Sham mice. The salutary benefits of rAAV9-BAG3 were also observed in myocytes isolated from MI hearts including improved cell shortening (p<0.05), increased systolic [Ca2+]i, increased [Ca2+]i transient amplitudes and increased maximal ICa amplitude. IMPLICATIONS: The results suggest that BAG3 gene therapy may provide a novel therapeutic option for the treatment of heart failure.

9.
JCI Insight ; 1(19): e90931, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27882354

ABSTRACT

Bcl-2-associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9-expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Myocytes, Cardiac/pathology , Reperfusion Injury/prevention & control , Animals , Apoptosis , Autophagy , Cell Hypoxia , Cells, Cultured , Female , Male , Mice , Reperfusion Injury/therapy , Transfection
10.
PLoS One ; 7(9): e45000, 2012.
Article in English | MEDLINE | ID: mdl-22984599

ABSTRACT

JC virus, JCV, is a human neurotropic polyomavirus whose replication in glial cells causes the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML). In addition, JCV possesses oncogenic activity and expression of its transforming protein, large T-antigen (T-Ag), in several experimental animals induces tumors of neural origin. Further, the presence of JCV DNA and T-Ag have been repeatedly observed in several human malignant tissues including primitive neuroectodermal tumors and glioblastomas. Earlier studies have demonstrated that Bag3, a member of the Bcl-2-associated athanogene (Bag) family of proteins, which is implicated in autophagy and apoptosis, is downregulated upon JCV infection of glial cells and that JCV T-Ag is responsible for suppressing the activity of the BAG3 promoter. Here, we investigated the possible impact of Bag3 on T-Ag expression in JCV-infected human primary glial cells as well as in cells derived from T-Ag-induced medulloblastoma in transgenic animals. Results from these studies revealed that overexpression of Bag3 drastically decreases the level of T-Ag expression by inducing the autophagic degradation of the viral protein. Interestingly, this event leads to the inhibition of JCV infection of glial cells, suggesting that the reduced levels of T-antigen seen upon the overexpression of Bag3 has a biological impact on the viral lytic cycle. Results from protein-protein interaction studies showed that T-Ag and Bag3 physically interact with each other through the zinc-finger of T-Ag and the proline rich domains of Bag3, and this interaction is important for the autophagic degradation of T-Ag. Our observations open a new avenue of research for better understanding of virus-host interaction by investigating the interplay between T-Ag and Bag3, and their impact on the development of JCV-associated diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigens, Polyomavirus Transforming/metabolism , Autophagy , JC Virus/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Antigens, Polyomavirus Transforming/genetics , Apoptosis Regulatory Proteins , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/virology , Binding Sites , Blotting, Western , Cell Line, Tumor , Cells, Cultured , DNA, Viral/genetics , Gene Dosage , Host-Pathogen Interactions , Humans , JC Virus/genetics , JC Virus/physiology , Mice , Mice, Transgenic , Polymerase Chain Reaction , Protein Binding , Proteolysis , RNA Interference , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL