Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Gen Physiol Biophys ; 42(1): 25-36, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36705302

ABSTRACT

A high-fructose intake is metabolically analogous to a high-fat diet. The impact of highfructose intake was investigated in spontaneously hypertensive (SHR) and hypertriacylglycerolemic (HTG) rats to find out the impact of which risk factor of metabolic syndrome - hypertension or hypertriacylglycerolemia - will cause more complications. Rats were fed a standard or a fructose diet (F60) with 60% of added fructose for 5 weeks. The F60 diet increased the total serum cholesterol content of both HTG-F60 and SHR-F60 rats. Further, in SHR-F60 it increased serum triacylglycerols, TBARS in the liver, a specific activity of NAGA in the kidney, aggravated glucose tolerance, deteriorated synaptic plasticity, and reduced somatic and dendritic responses in the hippocampus. SHR rats were more sensitive to the F60 diet, suggesting that hypertension along with a high-fructose intake result in a more pronounced disorder compared to hypertriacylglycerolemia. This work wants to draw attention to fructose-induced health risks associated with hypertension.


Subject(s)
Dyslipidemias , Hypertension , Metabolic Syndrome , Rats , Animals , Rats, Inbred SHR , Hypertension/chemically induced , Oxidative Stress , Metabolic Syndrome/complications , Fructose/adverse effects , Dyslipidemias/complications , Hippocampus
2.
Mar Drugs ; 19(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34940658

ABSTRACT

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Light Pollution , Stress, Physiological , Animals , Aquatic Organisms , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Connexin 43/metabolism , Disease Models, Animal , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/chemistry , Drug Combinations , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/chemistry , Female , Heart/drug effects , Hypertension/complications , Male , Rats , Rats, Inbred SHR , Rats, Wistar
3.
Int J Mol Sci ; 21(2)2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31947691

ABSTRACT

The arrhythmogenic potential of ß1-adrenoceptor autoantibodies (ß1-AA), as well as antiarrhythmic properties of omega-3 in heart diseases, have been reported while underlying mechanisms are poorly understood. We aimed to test our hypothesis that omega-3 (eicosapentaenoic acid-EPA, docosahexaenoic acid-DHA) may inhibit matrix metalloproteinase (MMP-2) activity to prevent cleavage of ß1-AR and formation of ß1-AA resulting in attenuation of pro-arrhythmic connexin-43 (Cx43) and protein kinase C (PKC) signaling in the diseased heart. We have demonstrated that the appearance and increase of ß1-AA in blood serum of male and female 12-month-old spontaneously hypertensive rats (SHR) was associated with an increase of inducible ventricular fibrillation (VF) comparing to normotensive controls. In contrast, supplementation of hypertensive rats with omega-3 for two months suppressed ß1-AA levels and reduced incidence of VF. Suppression of ß1-AA was accompanied by a decrease of elevated myocardial MMP-2 activity, preservation of cardiac cell membrane integrity and Cx43 topology. Moreover, omega-3 abrogated decline in expression of total Cx43 as well as its phosphorylated forms at serine 368 along with PKC-ε, while decreased pro-fibrotic PKC-δ levels in hypertensive rat heart regardless the sex. The implication of MMP-2 in the action of omega-3 was also demonstrated in cultured cardiomyocytes in which desensitization of ß1-AR due to permanent activation of ß1-AR with isoproterenol was prevented by MMP-2 inhibitor or EPA. Collectively, these data support the notion that omega-3 via suppression of ß1-AA mechanistically controlled by MMP-2 may attenuate abnormal of Cx43 and PKC-ε signaling; thus, abolish arrhythmia substrate and protect rats with an advanced stage of hypertension from malignant arrhythmias.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Autoantibodies/immunology , Autoantigens/immunology , Fatty Acids, Omega-3/pharmacology , Hypertension/complications , Receptors, Adrenergic, beta-1/immunology , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Biomarkers , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Connexin 43/metabolism , Disease Models, Animal , Disease Susceptibility , Fatty Acids, Omega-3/metabolism , Female , Male , Matrix Metalloproteinase 2/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Protein Kinase C-epsilon/metabolism , Rats , Rats, Inbred SHR , Sarcolemma/metabolism , Sarcolemma/ultrastructure , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/etiology , Ventricular Fibrillation/physiopathology
4.
Mol Cell Biochem ; 454(1-2): 191-202, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30446908

ABSTRACT

We aimed to explore whether specific high-sucrose intake in older female rats affects myocardial electrical coupling protein, connexin-43 (Cx43), protein kinase C (PKC) signaling, miR-1 and miR-30a expression, and susceptibility of the heart to malignant arrhythmias. Possible benefit of the supplementation with melatonin (40 µg/ml/day) and omega-3 polyunsaturated fatty acids (Omacor, 25 g/kg of rat chow) was examined as well. Results have shown that 8 weeks lasting intake of 30% sucrose solution increased serum cholesterol, triglycerides, body weight, heart weight, and retroperitoneal adipose tissues. It was accompanied by downregulation of cardiac Cx43 and PKCε signaling along with an upregulation of myocardial PKCδ and miR-30a rendering the heart prone to ventricular arrhythmias. There was a clear benefit of melatonin or omega-3 PUFA supplementation due to their antiarrhythmic effects associated with the attenuation of myocardial Cx43, PKC, and miR-30a abnormalities as well as adiposity. The potential impact of these findings may be considerable, and suggests that high-sucrose intake impairs myocardial signaling mediated by Cx43 and PKC contributing to increased susceptibility of the older obese female rat hearts to malignant arrhythmias.


Subject(s)
Connexin 43/metabolism , Dietary Sucrose/adverse effects , Fatty Acids, Omega-3/pharmacology , Heart/drug effects , Melatonin/pharmacology , Obesity/drug therapy , Signal Transduction/drug effects , Animals , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Fatty Acids, Omega-3/metabolism , Female , Melatonin/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Obesity/chemically induced , Obesity/complications , Obesity/metabolism , Protein Kinase C-delta/metabolism , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar
5.
J Pineal Res ; 67(4): e12605, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31408542

ABSTRACT

Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 µmol/L), a melatonin receptor blocker (luzindole, 5 µmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.


Subject(s)
Action Potentials/drug effects , Connexin 43/metabolism , Melatonin/pharmacology , Myocardium/metabolism , Potassium/adverse effects , Receptors, Melatonin/metabolism , Ventricular Fibrillation/metabolism , Animals , Male , Myocardium/pathology , Potassium/pharmacology , Rats , Rats, Wistar , Ventricular Fibrillation/chemically induced , Ventricular Fibrillation/pathology , Ventricular Fibrillation/physiopathology
6.
Saudi Pharm J ; 27(8): 1196-1202, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31885479

ABSTRACT

BACKGROUND: Metabolic syndrome is a cluster of metabolic risk factors. The clear causes of its development are not known yet and there is no comprehensive treatment of this disease. There is a trend to use natural substances in the treatment of various diseases, but their effects need to be well explored. We decided to test effect of rutin compared to the effect of the standard drug atorvastatin. METHODS: As a model of metabolic syndrome we used males of hypertriacylglycerolemic rats in combination with high-fat-high-fructose diet. Rutin (100 mg/kg) and atorvastatin (50 mg/kg) were administered orally daily for 5 weeks. RESULTS: We determined biochemical parameters from blood: HDL-cholesterol, LDL-cholesterol, total cholesterol, triacylglycerols. Relaxation and contraction response of aorta was measured to determine vessel dysfunctions and possible predisposition to cardiovascular disease. The negative influence on cognitive functions could be associated with the development of metabolic cognitive syndrome. Therefore we aimed to monitor spatial memory by Morris water maze test. Both rutin and atorvastatin had a tendency to decrease levels of serum triacylglycerols, but only atorvastatin significantly reduced levels od LDL-cholesterol and increased HDL-cholesterol levels. Both compounds significantly reduced the phenylephrine-induced contractile response of the aorta and improved the relaxation response. Further, treated animals learned better compared to untreated rats in the Morris water maze. CONCLUSION: Based on our results we can assume that atorvastatin and rutin had positive effect on spatial memory and vessel reactivity. Atorvastatin optimized lipid profile of blood serum.

7.
Histochem Cell Biol ; 147(1): 63-73, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27600718

ABSTRACT

We aimed to study the impact of altered thyroid status on myocardial expression of electrical coupling protein connexin-43 (Cx43), the susceptibility of rats to ventricular fibrillation (VF) and the effects of antioxidant-rich red palm oil (RPO). Adult male and female euthyroid, hyperthyroid (treated with T3/T4), hypothyroid (treated with methimazole) Wistar rats supplemented or not with RPO for 6 weeks were used. Function of isolated perfused heart and VF threshold were determined. Left ventricular tissue was used for assessment of mRNA and protein levels of Cx43, its phosphorylated forms and topology. Protein kinase C signaling (PKC) and gene transcripts of some proteins related to cardiac arrhythmias were assessed. Hyperthyroid state resulted in decrease of total and phosphorylated forms of Cx43 and suppression of PKC-ε expression in males and females, decrease of Cx43 mRNA in females, decrease of VF threshold and increase of functional parameters in male rat hearts. In contrast, hypothyroid status resulted in the increase of total and phosphorylated forms of Cx43, enhancement PKC-ε expression in males and females, increase of Cx43 mRNA in females, increase of VF threshold and decrease of functional parameters in male rat hearts. Function of the heart was partially normalized by RPO intake, which also enhanced myocardial Cx43 and PKC-ε expression as well as increased VF threshold in hyperthyroid male rats. We conclude that there is an inverse relationship between myocardial expression of Cx43, including its functional phosphorylated forms, and susceptibility of male rat hearts to VF in condition of altered thyroid status. RPO intake partly ameliorated adverse changes caused by excess of thyroid hormones.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Connexin 43/genetics , Heart/drug effects , Myocardium/metabolism , Plant Oils/pharmacology , Thyroid Gland/drug effects , Administration, Oral , Animals , Arrhythmias, Cardiac/metabolism , Connexin 43/antagonists & inhibitors , Connexin 43/metabolism , Female , Male , Palm Oil , Plant Oils/administration & dosage , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Thyroid Gland/metabolism
8.
Can J Physiol Pharmacol ; 95(8): 911-919, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28459162

ABSTRACT

We aimed to explore whether myocardial intercellular channel protein connexin-43 (Cx43) along with PKCε and MMP-2 might be implicated in responses to acute cardiac injury induced by 2 distinct sublethal interventions in Wistar rats. Animals underwent either single chest irradiation at dose of 25 Gy or subcutaneous injection of isoproterenol (ISO, 120 mg/kg) and were compared with untreated controls. Forty-two days post-interventions, the hearts were excised and left ventricles were used for analysis. The findings showed an increase of total as well as phosphorylated forms of myocardial Cx43 regardless of the type of interventions. Enhanced phosphorylation of Cx43 coincided with increased PKCε expression in both models. Elevation of Cx43 was associated with its enhanced distribution on lateral surfaces of the cardiomyocytes in response to both interventions, while focal areas of fibrosis without Cx43 were found in post-ISO but not post-irradiated rat hearts. In parallel, MMP-2 activity was decreased in the former while increased in the latter. Cardiac function was maintained and the susceptibility of the hearts to ischemia or malignant arrhythmias was not deteriorated 42 days after interventions when compared with controls. Altogether, the findings indicate that myocardial Cx43 is most likely implicated in potentially salutary responses to acute heart injury.


Subject(s)
Cardiomyopathies/metabolism , Connexin 43/metabolism , Myocardium/metabolism , Up-Regulation , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Extracellular Space/drug effects , Extracellular Space/metabolism , Extracellular Space/radiation effects , Isoproterenol/adverse effects , Male , Matrix Metalloproteinase 2/metabolism , Myocardium/pathology , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar , Up-Regulation/drug effects , Up-Regulation/radiation effects
9.
Int J Mol Sci ; 18(11)2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29160855

ABSTRACT

The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.


Subject(s)
Antioxidants/metabolism , Heart/drug effects , Myocardium/metabolism , Nitric Oxide Synthase/metabolism , Palm Oil/pharmacology , Animals , Blood Pressure/drug effects , Coronary Circulation/drug effects , Dietary Supplements , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Heart Function Tests , Heart Rate/drug effects , Myocardium/enzymology , Rats , Rats, Inbred SHR , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Glutathione Peroxidase GPX1
10.
Can J Physiol Pharmacol ; 91(8): 633-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23889002

ABSTRACT

We hypothesized that the pineal hormone melatonin, which exhibits cardioprotective effects, might affect myocardial expression of cell-to-cell electrical coupling protein connexin-43 (Cx43) and protein kinase C (PKC) signaling, and hence, the propensity of the heart to lethal ventricular fibrillation (VF). Spontaneously hypertensive (SHR) and normotensive Wistar rats fed a standard rat chow received melatonin (40 µg/mL in drinking water during the night) for 5 weeks, and were compared with untreated rats. Melatonin significantly reduced blood pressure and normalized triglycerides in SHR, whereas it decreased body mass and adiposity in Wistar rats. Compared with healthy rats, the threshold to induce sustained VF was significantly lower in SHR (18.3 ± 2.6 compared with 29.2 ± 5 mA; p < 0.05) and increased in melatonin-treated SHR and Wistar rats to 33.0 ± 4 and 32.5 ± 4 mA. Melatonin attenuated abnormal myocardial Cx43 distribution in SHR, and upregulated Cx43 mRNA, total Cx43 protein, and its functional phosphorylated forms in SHR, and to a lesser extent, in Wistar rat hearts. Moreover, melatonin suppressed myocardial proapoptotic PKCδ expression and increased cardioprotective PKCε expression in both SHR and Wistar rats. Our findings indicate that melatonin protects against lethal arrhythmias at least in part via upregulation of myocardial Cx43 and modulation of PKC-related cardioprotective signaling.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Cardiotonic Agents/therapeutic use , Connexin 43/metabolism , Hypertension/drug therapy , Melatonin/therapeutic use , Myocardium/metabolism , Adaptation, Physiological/drug effects , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Blotting, Western , Cardiotonic Agents/adverse effects , Cardiotonic Agents/blood , Connexin 43/biosynthesis , Hypertension/complications , Hypertension/metabolism , Hypertension/pathology , Melatonin/administration & dosage , Melatonin/blood , Protein Kinase C/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , Real-Time Polymerase Chain Reaction , Signal Transduction
11.
Gen Physiol Biophys ; 32(2): 285-92, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23682019

ABSTRACT

The etiology of diabetic complications is strongly associated with increased oxidative stress. The aim of the present study was to evaluate the effect of the potent antioxidant stobadine (STB) on global ischemia-reperfusion cardiac injury in the rat model of diabetes mellitus (DM). Diabetes was induced by multiple low doses of streptozotocin. The effect of STB was compared with that of a high dose of α-lipoic acid (ALA). All experiments were performed on isolated Langendorff-perfused hearts 10 weeks after streptozotocin administration. Diabetic hearts showed to be more resistant to ischemia-reperfusion than the control hearts, as shown by the reduced number of reperfusion dysrhythmias. The effect of the therapy with ALA (100 mg/kg i.p., 5 times a week during 8 weeks) was comparable to that of STB (25 mg/kg i.p., 5 times a week during 8 weeks) resulting in lowering the heart rate and coronary flow as well as the number of serious reperfusion dysrhythmias. Though the protective effect of STB on the reperfusion-induced dysrhythmias was comparable with that of ALA, both substances failed to enhance functional recovery of the diabetic rat heart.


Subject(s)
Antioxidants/administration & dosage , Carbolines/administration & dosage , Diabetes Complications/drug therapy , Diabetes Complications/physiopathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology , Thioctic Acid/administration & dosage , Animals , Male , Myocardial Reperfusion Injury/etiology , Rats , Rats, Wistar , Treatment Outcome
12.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830700

ABSTRACT

Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.


Subject(s)
Heart Failure , Hypertension , Humans , Arrhythmias, Cardiac , Myocardium , Heart Failure/complications , Myocytes, Cardiac
13.
Can J Physiol Pharmacol ; 90(9): 1235-45, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22908996

ABSTRACT

The purpose of this study was to test our hypothesis that red palm oil (RPO) intake may affect abnormalities of myocardial connexin-43 (Cx43) and protein kinase Cε (PKCε) signaling, and consequently the propensity of the spontaneously hypertensive rat heart (SHR) heart to arrhythmias. SHR and Wistar-Kyoto (WKY) rats fed a standard rat chow plus red palm oil (200 µL/day) for 5 weeks were compared with untreated rats. Cytosolic but not particulate PKCε expression as well as Cx43-mRNA, total Cx43 proteins, and its phoshorylated forms were increased, and disordered localization of Cx43 was attenuated in the left ventricle of RPO-fed SHR compared with untreated rats. These alterations were associated with suppression of early post-ischemic-reperfusion-related ventricular tachycardia and electrically inducible ventricular fibrillation. However, the treatment dose of RPO caused down-regulation of myocardial Cx43, but did not alter its cell membrane distribution or overall PKCε expression in WKY rats. It was, however, associated with poor arrhythmia protection, suggesting overdosing. Results indicate that SHR benefit from RPO intake, particularly because of its apparent anti-arrhythmic effects. This protection can be, in part, attributed to the preservation of cell-to-cell communication via up-regulation of myocardial Cx43, but not with PKCε activation.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/prevention & control , Connexin 43/biosynthesis , Hypertension/metabolism , Myocardium/metabolism , Plant Oils/therapeutic use , Animals , Anti-Arrhythmia Agents/administration & dosage , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Blood Pressure/physiology , Blotting, Western , Hypertension/complications , Hypertension/drug therapy , Hypertension/enzymology , In Vitro Techniques , Male , Myocardium/enzymology , Palm Oil , Plant Oils/administration & dosage , Plant Oils/pharmacology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Real-Time Polymerase Chain Reaction , Up-Regulation
14.
Antioxidants (Basel) ; 9(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580481

ABSTRACT

Cardiac ß-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced ß-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-ß1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.

15.
Can J Physiol Pharmacol ; 87(12): 1120-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20029549

ABSTRACT

Using whole-heart preparations, we tested our hypothesis that Ca(2+) handling is closely related to cell-to-cell coupling at the gap junctions and that both are critical for the development and particularly the termination of ventricular fibrillation (VF) and hence the prevention of sudden arrhythmic death. Intracellular free calcium concentration ([Ca(2+)](i)), ECG, and left ventricular pressure were continuously monitored in isolated guinea pig hearts before and during development of low K(+)-induced sustained VF and during its conversion into sinus rhythm facilitated by stobadine. We also examined myocardial ultrastructure to detect cell-to-cell coupling alterations. We demonstrated that VF occurrence was preceded by a 55.9% +/- 6.2% increase in diastolic [Ca(2+)](i), which was associated with subcellular alterations indicating Ca(2+) overload of the cardiomyocytes and disorders in coupling among the cells. Moreover, VF itself further increased [Ca(2+)](i) by 58.2% +/- 3.4% and deteriorated subcellular and cell-to-cell coupling abnormalities that were heterogeneously distributed throughout the myocardium. In contrast, termination of VF and its conversion into sinus rhythm was marked by restoration of basal [Ca(2+)](i), resulting in recovery of intercellular coupling linked with synchronous contraction. Furthermore, we have shown that hearts exhibiting lower SERCA2a (sarcoplasmic reticulum Ca(2+)-ATPase) activity and abnormal intercellular coupling (as in older guinea pigs) are more prone to develop Ca(2+) overload associated with cell-to-cell uncoupling than hearts with higher SERCA2a activity (as in young guinea pigs). Consequently, young animals are better able to terminate VF spontaneously. These findings indicate the crucial role of Ca(2+) handling in relation to cell-to-cell coupling in both the occurrence and termination of malignant arrhythmia.


Subject(s)
Calcium/physiology , Death, Sudden, Cardiac/prevention & control , Excitation Contraction Coupling/physiology , Myocardium/metabolism , Animals , Calcium/analysis , Calcium/metabolism , Electrocardiography , Gap Junctions/physiology , Guinea Pigs , Heart/physiology , Male , Microscopy, Electron , Myocardium/chemistry , Myocardium/ultrastructure , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/physiology , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/physiopathology
16.
Interdiscip Toxicol ; 12(4): 192-199, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32461723

ABSTRACT

Metabolic syndrome represents one of the major health, social and economic issues nowadays, and affects more than 25% people worldwide. Being a multifactorial health problem, metabolic syndrome clusters various features, such as obesity, dyslipidemia, hyperglycemia and hypertension. Each of these disturbances represents a risk factor for developing cardiovascular disease. Moreover, patients with metabolic syndrome are more likely to suffer from depression, thus treatment with antidepressants (e.g. venlafaxine) is often neccessary. However, many of the antidepressants themselves may contribute to worsening or even development of the metabolic syndrome, thus creating a "vicious circle". The aim of this work was to investigate on the animal model of metabolic syndrome, i.e. on hypertriacylglycerolemic rats fed high-fat-fructose diet (HFFD): 1) the effect of a change in diet from HFFD to a standard diet (SD) and the effect of venlafaxine treatment, 2) during HFFD, 3) as well as during a changed diet to SD. We focused on biometric parameters, blood pressure and selected ECG parameters. We observed the reversibility of the present metabolic and cardiovascular changes by switching the HFFD to SD in the last 3 weeks of the experiment. Switch to the standard diet led to decrease of body weight, even in the presence of venlafaxine. Administration of venlafaxine caused the decrease of heart weight/body weight index in rats fed with HFFD compared to the untreated group fed with HFFD for 8 weeks. Blood pressure, which was increased in the HFFD group showed a tendency to decrease to control values after switching to the standard diet . Administration of venlafaxine led to significant increase in all parameters of blood pressure when rats were fed with HFFD throughout the whole experiment. In untreated rats fed with HFFD for 8 weeks, we observed a shorter PQ interval and prolonged QRS complex as well as QTc interval compared to untreated rats with diet switched to SD. This effect was potentiated by venlafaxine administered not only during HFFD but even after switch to SD. Our results point to the fact that metabolic syndrome is clearly affecting the function of the cardiovascular system by modifying blood pressure and electrical activity of the heart. Moreover, administration of venlafaxine may lead to worsening of the observed changes, especially in the presence of high-fat-fructose diet.

17.
Neuro Endocrinol Lett ; 29(5): 798-801, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18987606

ABSTRACT

OBJECTIVES: To elucidate gender-related differences in occurrence of sudden cardiac death the myocardial connexin-43 (Cx43) and the susceptibility of male and female rat hearts to ventricular fibrillation (VF) were investigated. METHODS AND RESULTS: Ventricular tissues taken from male and female normotensive Wistar and spontaneously hypertensive (SHR) rats were processed for immuno-fluorescence and immuno-blotting of Cx43. Susceptibility to ventricular fibrillation was examined in isolated heart preparation using either electrical stimulation or low K+ perfusion. Results showed that VF susceptibility of male either normotensive or hypertensive rats was significantly increased comparing to female counterparts. In correlation, ventricular expression of Cx43 was markedly lower in males of both normotensive and hypertensive rats comparing to females. SHR in addition exhibited abnormal myocardial Cx43 distribution due to structural remodelling. CONCLUSIONS: Findings indicate that higher level of myocardial Cx43 expression is linked with lower lethal arrhythmia susceptibility and vice versa. It appears that Cx43 can be involved in sex-related differences in incidence of life-threatening arrhythmias.


Subject(s)
Arrhythmias, Cardiac/genetics , Connexin 43/biosynthesis , Myocardium/metabolism , Animals , Arrhythmias, Cardiac/physiopathology , Connexin 43/genetics , Connexins/metabolism , Electrocardiography , Female , Immunohistochemistry , Male , Microscopy, Fluorescence , Rats , Rats, Inbred SHR , Rats, Wistar , Sex Characteristics
18.
Interdiscip Toxicol ; 10(3): 86-92, 2017 Nov.
Article in English | MEDLINE | ID: mdl-30174531

ABSTRACT

Metabolic syndrome belongs to the most important risk factors of cardiovascular diseases. The aim of this study was to investigate changes in cardiovascular system induced by high cholesterol and high fat diet (HCHF) in HTG rats and their influence by a pyridoindole antioxidant - SMe1EC2 (S). The effects of S were compared with those of atorvastatin (A). Male HTG rats were fed HCHF (1% cholesterol + 7.5% lard) for 4 weeks. S and A were administered p.o., 50 mg/kg b.w. Following experimental groups were used: Wistar rats (W), hypertriglyceridemic rats (HTG), HTG rats fed HCHF (CHOL), HTG+S (S-HTG), CHOL+S (S-CHOL), and CHOL+A (A-CHOL). Values of blood pressure (BP) and selected ECG parameters were monitored in conscious animals, functions of the isolated heart and aorta were analyzed ex vivo. At the end of the experiment, systolic (sBP) and diastolic (dBP) blood pressure was increased in HTG and CHOL. S and A decreased BP in all treated groups. Accordingly with BP changes, the aortic endothelial function of CHOL was damaged. Both S and A administration ameliorated the endothelium-dependent relaxation to values of W. PQ and QTc intervals were prolonged in CHOL, while the treatment with S or A improved ECG findings. Prodysrhythmogenic threshold was decreased significantly in CHOL and both treatments returned it to the control values. In conclusion, HCHF increased BP, impaired endothelial relaxation of the aorta and potentiated susceptibility of myocardium to dysrhythmias. The effect of S on the changes induced by HCHF diet was more pronounced than that of A.

19.
Nutrients ; 9(11)2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29084142

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFAs), namely eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are permanent subjects of interest in relation to the protection of cardiovascular health and the prevention of the incidence of both ventricular and atrial arrhythmias. The purpose of this updated review is to focus on the novel cellular and molecular effects of omega-3 PUFAs, in the context of the mechanisms and factors involved in the development of cardiac arrhythmias; to provide results of the most recent studies on the omega-3 PUFA anti-arrhythmic efficacy and to discuss the lack of the benefit in relation to omega-3 PUFA status. The evidence is in the favor of omega-3 PUFA acute and long-term treatment, perhaps with mitochondria-targeted antioxidants. However, for a more objective evaluation of the anti-arrhythmic potential of omega-3 PUFAs in clinical trials, it is necessary to monitor the basal pre-interventional omega-3 status of individuals, i.e., red blood cell content, omega-3 index and free plasma levels. In the view of evidence-based medicine, it seems to be crucial to aim to establish new approaches in the prevention of cardiac arrhythmias and associated morbidity and mortality that comes with these conditions.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Fatty Acids, Omega-3/pharmacology , Animals , Arrhythmias, Cardiac/drug therapy , Disease Models, Animal , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Humans , Meta-Analysis as Topic , Randomized Controlled Trials as Topic
20.
Interdiscip Toxicol ; 10(3): 81-85, 2017 Nov.
Article in English | MEDLINE | ID: mdl-30174530

ABSTRACT

Elevated plasma cholesterol, especially low density lipoprotein (LDL) cholesterol, is one of the major risk factors for atherosclerosis and coronary heart disease. Hereditary hypertriglyceridemic rats (hHTG) were developed as a new inbred model for the study of relationships between blood pressure and metabolic abnormalities. The aim of this work was to determine the cholesterol-lowering and antioxidant effects of the novel pyridoindol derivative SMe1EC2, compared to the cholesterol-lowering drug atorvastatin, in rats fed either standard or high-fat and high-cholesterol diet (HFC; 1% cholesterol and 7.5% lard fat). Male hHTG rats fed HFC (HTG+HFC) were administered with SMe1EC2 or atorvastatin (both 50 mg/kg/day p.o.) for 4 weeks. Physiological status of animals was monitored by the measurement of preprandial glucose levels and blood pressure. Lipid profile was characterized by the serum levels of total cholesterol (TC), HDL-, LDL-cholesterol and triglycerides (TRG). The concentration of thiobarbituric acid reactive substances (TBARS) was evaluated in the kidney, liver and serum. Further, the assessment of pro-inflammatory cytokines TNF-α, IL-1 and IL-6 in the serum was completed. Feeding the animals with HFC diet resulted in increased serum levels of TC, LDL and TRG. SMe1EC2 ameliorated serum levels of LDL in hHTG rats, both on standard and HFC diet. These effects were comparable with those of the standard hypolipidemicum atorvastatin. SMe1EC2 lowered blood pressure, tissue TBARS concentrations and serum IL-1 levels of HTG+HFC rats. Beneficial effects together with very good toxicity profile predestinate SMe1EC2 to be promising agent for further surveys related to metabolic syndrome features.

SELECTION OF CITATIONS
SEARCH DETAIL