Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Water Sci Technol ; 55(8-9): 83-9, 2007.
Article in English | MEDLINE | ID: mdl-17546973

ABSTRACT

Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.


Subject(s)
Bioreactors , Waste Disposal, Fluid/methods , Biofilms , Coal Tar , Equipment Design , Food-Processing Industry , Industrial Waste , Textile Industry , Waste Disposal, Fluid/instrumentation
2.
Water Sci Technol ; 55(8-9): 159-64, 2007.
Article in English | MEDLINE | ID: mdl-17546982

ABSTRACT

The influence of temperature (5-35 C) and salinity (up to 20 g/l NaCl) on the wastewater purification process in completely mixed and aerated submerged fixed bed biofilm reactors (SFBBRs) was studied. C- and N-conversion in SFBBRs designed according to the DWA (German Association for Water, Wastewater and Waste) rules for carbon removal was investigated for several months on synthetic wastewater. The DOC degradation rate was even at, according to the DWA, high DOC/BOD loading rates not much affected by temperatures between 5-35 degrees C and salt contents up to 20 g/L NaCl. At these high DOC loadings an appreciable ammonium conversion could also be observed. The ammonium conversion proved to be sensitive to temperature and salinity. At 5 degrees C the ammonium removal rate decreased by a factor of five compared to 25-35 degrees C. Under many operation conditions investigated more than 50% of the converted ammonium was transformed into gaseous nitrogen. The addition of 20 g/L NaCl caused a strong inhibition of the ammonium removal rate over the whole temperature range investigated.


Subject(s)
Bacteria, Aerobic/drug effects , Bioreactors , Sodium Chloride/pharmacology , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Aerobiosis , Bacteria, Aerobic/physiology , Biofilms , Carbon/metabolism , Nitrates/metabolism , Nitrites/metabolism , Nitrogen/metabolism , Quaternary Ammonium Compounds/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL