Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nature ; 603(7899): 124-130, 2022 03.
Article in English | MEDLINE | ID: mdl-35197626

ABSTRACT

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/metabolism , Genome-Wide Association Study , Humans , Motor Neurons/pathology , Nerve Tissue Proteins
2.
PLoS Biol ; 21(3): e3002028, 2023 03.
Article in English | MEDLINE | ID: mdl-36930682

ABSTRACT

A major function of TAR DNA-binding protein-43 (TDP-43) is to repress the inclusion of cryptic exons during RNA splicing. One of these cryptic exons is in UNC13A, a genetic risk factor for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The accumulation of cryptic UNC13A in disease is heightened by the presence of a risk haplotype located within the cryptic exon itself. Here, we revealed that TDP-43 extreme N-terminus is important to repress UNC13A cryptic exon inclusion. Further, we found hnRNP L, hnRNP A1, and hnRNP A2B1 bind UNC13A RNA and repress cryptic exon inclusion, independently of TDP-43. Finally, higher levels of hnRNP L protein associate with lower burden of UNC13A cryptic RNA in ALS/FTD brains. Our findings suggest that while TDP-43 is the main repressor of UNC13A cryptic exon inclusion, other hnRNPs contribute to its regulation and may potentially function as disease modifiers.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Heterogeneous-Nuclear Ribonucleoprotein L , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exons/genetics , Frontotemporal Dementia/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA , Nerve Tissue Proteins/metabolism
4.
Biol Pharm Bull ; 47(1): 138-144, 2024.
Article in English | MEDLINE | ID: mdl-38171773

ABSTRACT

Sjögren's syndrome (SS) is an autoimmune disorder characterized by oral dryness that is primarily attributed to tumor necrosis factor alpha (TNF-α)-mediated reduction in saliva production. In traditional Chinese medicine, goji berries are recognized for their hydrating effect and are considered suitable to address oral dryness associated with Yin deficiency. In the present study, we used goji berry juice (GBJ) to investigate the potential preventive effect of goji berries on oral dryness caused by SS. Pretreatment of human salivary gland cells with GBJ effectively prevented the decrease in aquaporin-5 (AQP-5) mRNA and protein levels induced by TNF-α. GBJ also inhibited histone H4 deacetylation and suppressed the generation of intracellular reactive oxygen species (ROS). Furthermore, GBJ pretreatment reserved mitochondrial membrane potential and suppressed the upregulation of Bax and caspase-3, indicating that GBJ exerted an antiapoptotic effect. These findings suggest that GBJ provides protection against TNF-α in human salivary gland cells and prevents the reduction of AQP-5 expression on the cell membrane. Altogether, these results highlight the potential role of GBJ in preventing oral dryness caused by SS.


Subject(s)
Lycium , Sjogren's Syndrome , Xerostomia , Humans , Tumor Necrosis Factor-alpha/metabolism , Lycium/metabolism , Salivary Glands/metabolism , Salivary Glands/pathology , Xerostomia/chemically induced , Xerostomia/prevention & control , Xerostomia/complications , Sjogren's Syndrome/complications , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Aquaporin 5/genetics
5.
Acta Neuropathol ; 146(4): 611-629, 2023 10.
Article in English | MEDLINE | ID: mdl-37555859

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by TDP-43 inclusions in the cortical and spinal motor neurons. It remains unknown whether and how pathogenic TDP-43 spreads across neural connections to progress degenerative processes in the cortico-spinal motor circuitry. Here we established novel mouse ALS models that initially induced mutant TDP-43 inclusions in specific neuronal or cell types in the motor circuits, and investigated whether TDP-43 and relevant pathological processes spread across neuronal or cellular connections. We first developed ALS models that primarily induced TDP-43 inclusions in the corticospinal neurons, spinal motor neurons, or forelimb skeletal muscle, by using adeno-associated virus (AAV) expressing mutant TDP-43. We found that TDP-43 induced in the corticospinal neurons was transported along the axons anterogradely and transferred to the oligodendrocytes along the corticospinal tract (CST), coinciding with mild axon degeneration. In contrast, TDP-43 introduced in the spinal motor neurons did not spread retrogradely to the cortical or spinal neurons; however, it induced an extreme loss of spinal motor neurons and subsequent degeneration of neighboring spinal neurons, suggesting a degenerative propagation in a retrograde manner in the spinal cord. The intraspinal degeneration further led to severe muscle atrophy. Finally, TDP-43 induced in the skeletal muscle did not propagate pathological events to spinal neurons retrogradely. Our data revealed that mutant TDP-43 spread across neuro-glial connections anterogradely in the corticospinal pathway, whereas it exhibited different retrograde degenerative properties in the spinal circuits. This suggests that pathogenic TDP-43 may induce distinct antero- and retrograde mechanisms of degeneration in the motor system in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Retrograde Degeneration , Animals , Mice , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Motor Neurons/metabolism , Retrograde Degeneration/metabolism , Retrograde Degeneration/pathology , Spinal Cord/pathology
6.
Neurobiol Dis ; 130: 104534, 2019 10.
Article in English | MEDLINE | ID: mdl-31310801

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by accumulation of fragmented insoluble TDP-43 and loss of TDP-43 from the nucleus. Increased expression of exogenous TARDBP (encoding TDP-43) induces TDP-43 pathology and cytotoxicity, suggesting the involvement of aberrant expression of TDP-43 in the pathogenesis of ALS. In normal conditions, however, the amount of TDP-43 is tightly regulated by the autoregulatory mechanism involving alternative splicing of TARDBP mRNA. To investigate the influence of autoregulation dysfunction, we inhibited the splicing of cryptic intron 6 using antisense oligonucleotides in vivo. This inhibition doubled the Tardbp mRNA expression, increased the fragmented insoluble TDP-43, and reduced the number of motor neurons in the mouse spinal cord. In human induced pluripotent stem cell-derived neurons, the splicing inhibition of intron 6 increased TARDBP mRNA and decreased nuclear TDP-43. These non-genetically modified models exhibiting rise in the TARDBP mRNA levels suggest that TDP-43 autoregulation turbulence might be linked to the pathogenesis of ALS.


Subject(s)
DNA-Binding Proteins/metabolism , Homeostasis/physiology , Motor Neurons/metabolism , RNA, Messenger/metabolism , Spinal Cord/metabolism , Alternative Splicing/physiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA-Binding Proteins/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mice , Motor Neurons/pathology , RNA, Messenger/genetics , Spinal Cord/pathology
7.
Anal Biochem ; 549: 174-183, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29627593

ABSTRACT

Oxytocin (OXT) and arginine vasopressin (AVP) are structurally similar neuropeptide hormones that function as neurotransmitters in the brain, and have opposite key roles in social behaviors. These peptides bind to their G protein-coupled receptors (OXTR and AVPRs), inducing calcium ion-dependent signaling pathways and endocytosis of these receptors. Because selective agonists and antagonists for these receptors have been developed as therapeutic and diagnostic agents for diseases such as psychiatric disorders, facile methods are in demand for the evaluation of selectivity between these receptors. In this study, we developed a quantitative assay for OXT- and AVP-induced endocytosis of their receptors. The mutated Oplophorus luciferase, nanoKAZ, was fused to OXTR and AVPRs to enable rapid quantification of agonist-induced endocytosis by bioluminescence reduction. Agonist stimulation significantly decreases bioluminescence of nanoKAZ-fused receptors in living cells. Using this system, we evaluated clinically used OXTR antagonist atosiban and a reported pyrazinyltriazole derivative, hereby designated as PF13. Atosiban acted as an antagonist of AVPR1a, as well as an agonist for AVPR1b, whereas PF13 antagonized OXTR more selectively than atosiban, as reported previously. This paper shows a strategy for quantification of agonist-induced endocytosis of OXTR and AVPRs, and confirms its potent utility in the evaluation of agonists and antagonists.


Subject(s)
Endocytosis/drug effects , Luciferases/metabolism , Luminescent Measurements/methods , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Vasotocin/analogs & derivatives , Animals , CHO Cells , Cricetulus , HEK293 Cells , Humans , Oxidation-Reduction/drug effects , Vasotocin/pharmacology
8.
Biol Pharm Bull ; 39(7): 1137-43, 2016.
Article in English | MEDLINE | ID: mdl-27374289

ABSTRACT

Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome.


Subject(s)
Adipocytes/drug effects , Adiponectin/metabolism , Gallic Acid/pharmacology , Plant Extracts/pharmacology , Terminalia , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Differentiation/drug effects , Cell Survival/drug effects , Fruit , Gallic Acid/isolation & purification , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Plant Extracts/chemistry , Triglycerides/metabolism
9.
Neurosci Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723906

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by nuclear depletion and cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43). TDP-43 plays a key role in regulating the splicing of numerous genes, including TARDBP. This review aims to delineate two aspects of ALS/FTD pathogenesis associated with TDP-43 function. First, we provide novel mechanistic insights into the splicing of UNC13A, a TDP-43 target gene. Single nucleotide polymorphisms (SNPs) in UNC13A are the most common risk factors for ALS/FTD. We found that TDP-43 represses "cryptic exon" inclusion during UNC13A RNA splicing. A risk-associated SNP in this exon results in increased RNA levels of UNC13A retaining the cryptic exon. Second, we described the perturbation of the TDP-43 autoregulatory mechanism caused by age-related DNA demethylation. Aging is a major risk factor for sporadic ALS/FTD. Typically, TDP-43 levels are regulated via alternative splicing of TARDBP mRNA. We hypothesized that TARDBP methylation is altered by aging, thereby disrupting TDP-43 autoregulation. We found that demethylation reduces the efficiency of alternative splicing and increases TARDBP mRNA levels. Moreover, we demonstrated that, with aging, this region is demethylated in the human motor cortex and is associated with the early onset of ALS.

10.
JMA J ; 7(3): 313-318, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39114608

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with a progressive and fatal course. They are often comorbid and share the same molecular spectrum. Their key pathological features are the formation of the aggregation of TDP-43, an RNA-binding protein, in the cytoplasm and its depletion from the nucleus in the central nervous system. In the nucleus, TDP-43 regulates several aspects of RNA metabolism, ranging from RNA transcription and alternative splicing to RNA transport. Suppressing the aberrant splicing events during RNA processing is one of the significant functions of TDP-43. This function is impaired when TDP-43 becomes depleted from the nucleus. Several critical cryptic splicing targets of TDP-43 have recently emerged, such as STMN2, UNC13A, and others. UNC13A is an important ALS/FTD risk gene, and the genetic variations, single nucleotide polymorphisms, cause disease via the increased susceptibility for cryptic exon inclusion under the TDP-43 dysfunction. Moreover, TDP-43 has an autoregulatory mechanism that regulates the splicing of its mRNA (TARDBP mRNA) in the healthy state. This study provides recent findings on the splicing regulatory function of TDP-43 and discusses the prospects of using these aberrant splicing events as efficient biomarkers.

11.
Sci Rep ; 14(1): 17382, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075177

ABSTRACT

In musical ensembles, people synchronise with each other despite the presence of time delays such as those related to sound transmission. However, the ways in which time delays in synchronisation are overcome remain unclear. This study aimed to investigate the basic characteristics and mechanism of synchronisation with time delays using a dyadic synchronisation-continuation finger-tapping task with time delays ranging from 0 to 240 ms. The results reveal that synchronisation performance improved under time delays of 40-160 ms compared with in the other conditions. This tolerance to the time delay could have been because such a delay allowed both participants in each pair to tap before receiving the stimuli from their partner, as seen in synchronisation with a constant-tempo metronome. In addition, the dependency of the timing control on the partner's previous inter-tap interval decreased at a time delay of 80 ms, relating to the fact that the acceleration and deceleration of the tapping tempo reduced under certain time delays, while the synchronisation performance improved. Uncertainty in the timing of the partner's stimulus could induce greater anticipatory responses, making it possible to tolerate longer time delays in dyadic finger-tapping tasks.


Subject(s)
Fingers , Music , Psychomotor Performance , Humans , Fingers/physiology , Male , Female , Psychomotor Performance/physiology , Adult , Young Adult , Time Factors , Time Perception/physiology
12.
Front Psychol ; 15: 1355586, 2024.
Article in English | MEDLINE | ID: mdl-38721312

ABSTRACT

We collect various types of information from our environment and organise it to create a coherent representation. Several researchers have suggested that multiple signals within the temporal binding window (TBW) can be integrated into a single coherent experience, such as flashes, beeps, and the McGurk effect. However, there is no evidence that TBW distortion also occurs in group interactions. This study investigates the influence of group size (i.e. the group size effect) and the degree of task involvement in temporal perception using computer-generated clap sound experiments. Participants listened to the randomly generated clap sounds and evaluated whether they were synchronised. We established three conditions based on different levels of task involvement: low (L), middle (M), and high (H) conditions. The varying task involvements reflect how participants interact with the clap sounds, ranging from passive listening in the L condition to actively generating sounds by pressing a key in the M condition, or attempting to synchronise key pressing sounds with the sounds in the H condition. Our experiments show a robust group size effect on TBW, regardless of the different conditions. In other words, as the group size increases, participants perceive the group clap as a single event. Furthermore, we found that the uncertain cause-effect relationship condition (H condition) shows the highest TBW. Interestingly, the TBW in the rigid cause-effect relationship (M condition) is the same as that in the no involvement condition (L condition). Our results suggest that a widened TBW in collective behaviour may facilitate cohesive action, enabling individuals to adapt to the group in relatively uncertain contexts.

13.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38277467

ABSTRACT

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Peptides , Proteomics
14.
Front Neurosci ; 17: 1131758, 2023.
Article in English | MEDLINE | ID: mdl-36895420

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective degeneration of upper and lower motor neurons. Currently, there are no effective biomarkers and fundamental therapies for this disease. Dysregulation in RNA metabolism plays a critical role in the pathogenesis of ALS. With the contribution of Next Generation Sequencing, the functions of non-coding RNAs (ncRNAs) have gained increasing interests. Especially, micro RNAs (miRNAs), which are tissue-specific small ncRNAs of about 18-25 nucleotides, have emerged as key regulators of gene expression to target multiple molecules and pathways in the central nervous system (CNS). Despite intensive recent research in this field, the crucial links between ALS pathogenesis and miRNAs remain unclear. Many studies have revealed that ALS-related RNA binding proteins (RBPs), such as TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS), regulate miRNAs processing in both the nucleus and cytoplasm. Of interest, Cu2+/Zn2+ superoxide dismutase (SOD1), a non-RBP associated with familial ALS, shows partially similar properties to these RBPs via the dysregulation of miRNAs in the cellular pathway related to ALS. The identification and validation of miRNAs are important to understand the physiological gene regulation in the CNS, and the pathological implications in ALS, leading to a new avenue for early diagnosis and gene therapies. Here, we offer a recent overview regarding the mechanism underlying the functions of multiple miRNAs across TDP-43, FUS, and SOD1 with the context of cell biology, and challenging for clinical applications in ALS.

15.
Front Cell Dev Biol ; 11: 1251551, 2023.
Article in English | MEDLINE | ID: mdl-37614226

ABSTRACT

Treatments for neurodegenerative disease, including Frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS), remain rather limited, underscoring the need for greater mechanistic insight and disease-relevant models. Our ability to develop novel disease models of genetic risk factors, disease modifiers, and other FTD/ALS-relevant targets is impeded by the significant amount of time and capital required to develop conventional knockout and transgenic mice. To overcome these limitations, we have generated a novel CRISPRi interference (CRISPRi) knockin mouse. CRISPRi uses a catalytically dead form of Cas9, fused to a transcriptional repressor to knockdown protein expression, following the introduction of single guide RNA against the gene of interest. To validate the utility of this model we have selected the TAR DNA binding protein (TDP-43) splicing target, stathmin-2 (STMN2). STMN2 RNA is downregulated in FTD/ALS due to loss of TDP-43 activity and STMN2 loss is suggested to play a role in ALS pathogenesis. The involvement of STMN2 loss of function in FTD has yet to be determined. We find that STMN2 protein levels in familial FTD cases are significantly reduced compared to controls, supporting that STMN2 depletion may be involved in the pathogenesis of FTD. Here, we provide proof-of-concept that we can simultaneously knock down Stmn2 and express the expanded repeat in the Chromosome 9 open reading frame 72 (C9ORF72) gene, successfully replicating features of C9-associated pathology. Of interest, depletion of Stmn2 had no effect on expression or deposition of dipeptide repeat proteins (DPRs), but significantly decreased the number of phosphorylated Tdp-43 (pTdp-43) inclusions. We submit that our novel CRISPRi mouse provides a versatile and rapid method to silence gene expression in vivo and propose this model will be useful to understand gene function in isolation or in the context of other neurodegenerative disease models.

16.
bioRxiv ; 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36747793

ABSTRACT

Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.

17.
Clin Transl Med ; 12(5): e818, 2022 05.
Article in English | MEDLINE | ID: mdl-35567447

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating human neurodegenerative diseases. A hallmark pathological feature of both diseases is the depletion of the RNA-binding protein TDP-43 from the nucleus in the brain and spinal cord of patients. A major function of TDP-43 is to repress the inclusion of cryptic exons during RNA splicing. When it becomes depleted from the nucleus in disease, this function is lost, and recently, several key cryptic splicing targets of TDP-43 have emerged, including STMN2, UNC13A, and others. UNC13A is a major ALS/FTD risk gene, and the genetic variations that increase the risk for disease seem to do so by making the gene more susceptible to cryptic exon inclusion when TDP-43 function is impaired. Here, we discuss the prospects and challenges of harnessing these cryptic splicing events as novel therapeutic targets and biomarkers. Deciphering this new cryptic code may be a touchstone for ALS and FTD diagnosis and treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Pick Disease of the Brain , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Biomarkers , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Humans
18.
Cell Rep ; 40(4): 111131, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35905718

ABSTRACT

Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and ß2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-ß2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.


Subject(s)
Frailty , Sarcopenia , Aging/physiology , Animals , Energy Metabolism , Frailty/metabolism , Frailty/pathology , Hypothalamic Area, Lateral , Mice , Muscle, Skeletal/metabolism , Sarcopenia/metabolism
19.
Neurosci Res ; 178: 78-82, 2022 May.
Article in English | MEDLINE | ID: mdl-35122916

ABSTRACT

Activation of human endogenous retrovirus-K (HERV-K) is one of the proposed risk factors for amyotrophic lateral sclerosis (ALS). The HERV-K envelope protein has been reported to show neurotoxicity, and development of therapy with reverse transcriptase inhibitors is being investigated. On the other hand, some reports have failed to show HERV-K activation in ALS. In this study, we analyzed the expression of HERV-K mRNA in the motor cortex and spinal cord of 15 Japanese patients with sporadic ALS and 19 controls using reverse transcriptase droplet digital PCR. This revealed no significant increase of HERV-K expression in ALS-affected tissues, suggesting that the association between ALS and HERV-K remains questionable.


Subject(s)
Amyotrophic Lateral Sclerosis , Endogenous Retroviruses , Motor Cortex , Amyotrophic Lateral Sclerosis/genetics , Endogenous Retroviruses/genetics , Humans , Japan , RNA, Messenger
20.
Science ; 378(6615): 94-99, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36201573

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis (FTD-ALS) are associated with both a repeat expansion in the C9orf72 gene and mutations in the TANK-binding kinase 1 (TBK1) gene. We found that TBK1 is phosphorylated in response to C9orf72 poly(Gly-Ala) [poly(GA)] aggregation and sequestered into inclusions, which leads to a loss of TBK1 activity and contributes to neurodegeneration. When we reduced TBK1 activity using a TBK1-R228H (Arg228→His) mutation in mice, poly(GA)-induced phenotypes were exacerbated. These phenotypes included an increase in TAR DNA binding protein 43 (TDP-43) pathology and the accumulation of defective endosomes in poly(GA)-positive neurons. Inhibiting the endosomal pathway induced TDP-43 aggregation, which highlights the importance of this pathway and TBK1 activity in pathogenesis. This interplay between C9orf72, TBK1, and TDP-43 connects three different facets of FTD-ALS into one coherent pathway.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA-Binding Proteins , Frontotemporal Dementia , Protein Serine-Threonine Kinases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , DNA Repeat Expansion , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endosomes/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Mice , Mutation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL