Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Acoust Soc Am ; 143(6): 3583, 2018 06.
Article in English | MEDLINE | ID: mdl-29960448

ABSTRACT

Seals exposed to intense sounds may suffer hearing loss. After exposure to playbacks of broadband pile-driving sounds, the temporary hearing threshold shift (TTS) of two harbor seals was quantified at 4 and 8 kHz (frequencies of the highest TTS) with a psychoacoustic technique. The pile-driving sounds had: a 127 ms pulse duration, 2760 strikes per h, a 1.3 s inter-pulse interval, a ∼9.5% duty cycle, and an average received single-strike unweighted sound exposure level (SELss) of 151 dB re 1 µPa2s. Exposure durations were 180 and 360 min [cumulative sound exposure level (SELcum): 190 and 193 dB re 1 µPa2s]. Control sessions were conducted under low ambient noise. TTS only occurred after 360 min exposures (mean TTS: seal 02, 1-4 min after sound stopped: 3.9 dB at 4 kHz and 2.4 dB at 8 kHz; seal 01, 12-16 min after sound stopped: 2.8 dB at 4 kHz and 2.6 dB at 8 kHz). Hearing recovered within 60 min post-exposure. The TTSs were small, due to the small amount of sound energy to which the seals were exposed. Biological TTS onset SELcum for the pile-driving sounds used in this study is around 192 dB re 1 µPa2s (for mean received SELss of 151 dB re 1 µPa and a duty cycle of ∼9.5%).


Subject(s)
Auditory Fatigue , Behavior, Animal , Environmental Exposure/adverse effects , Hearing , Noise/adverse effects , Phoca/physiology , Acoustics , Animals , Female , Hearing Tests , Motion , Phoca/psychology , Sound , Sound Spectrography , Swimming , Time Factors , Water
2.
Mar Environ Res ; 130: 315-324, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28874258

ABSTRACT

The foundations of offshore wind turbines are attached to the sea bed by percussion pile driving. Pile driving sounds may affect the behavior of fish. Acoustic dose-behavioral response relationships were determined for sea bass in a pool exposed for 20 min to pile driving sounds at seven mean received root-mean-square sound pressure levels [SPLrms; range: 130-166 dB re 1 µPa; single strike sound exposure level (SELss) range: 122-158; 6 dB steps]. Initial responses (sudden, short-lived changes in swimming speed and direction) and sustained responses (changes in school cohesion, swimming depth, and speed) were quantified. The 50% initial response threshold occurred at an SELss of 131 dB re 1 µPa2 s for 31 cm fish and 141 dB re 1 µPa2 s for 44 cm fish; the small fish thus reacted to lower SELss than the large fish. Analysis showed that there is no evidence, even at the highest sound level, for any consistent sustained response to sound exposure by the study animals. If wild sea bass are exposed to pile driving sounds at the levels used in the present study, there are unlikely to be any adverse effects on their ecology, because the initial responses after the onset of the piling sound observed in this study were short-lived.


Subject(s)
Acoustic Stimulation , Bass , Noise , Animal Distribution , Animals , Behavior, Animal , Sound , Swimming , Wind
SELECTION OF CITATIONS
SEARCH DETAIL