Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters

Publication year range
1.
J Am Chem Soc ; 144(37): 16726-16731, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36095292

ABSTRACT

We demonstrated the synthesis of a conductive two-dimensional metal-organic framework (MOF) thin film by single-step all-vapor-phase chemical vapor deposition (CVD). The synthesized large-area thin film of Cu3(C6O6)2 has an edge-on-orientation with high crystallinity. Cu3(C6O6)2 thin film-based microdevices were fabricated by e-beam lithography and had an electrical conductivity of 92.95 S/cm. Synthesis of conductive MOF thin films by the all-vapor-phase CVD will enable fundamental studies of physical properties and may help to accomplish practical applications of conductive MOFs.

2.
Inorg Chem ; 61(2): 791-795, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34962389

ABSTRACT

TTF3MCl6 (M = In, Sb) series were developed for an ideal platform to investigate the effect of back charge transfer of MCl63- on electrical conductivity depending on the metal ions. They were successfully synthesized by a UV light-induced one-pot reaction where TTF oxidation and formation of MCl63- occurred sequentially. In isostructural TTF3InCl6 and TTF3SbCl6, the intermolecular interaction between MCl63- and TTF induces back charge transfer, which were confirmed by the crystal structure and spectroscopic analysis. Despite the similar crystal structure in terms of intermolecular distance, TTF3InCl6 shows 3-orders of magnitude higher electrical conductivity compared to TTF3SbCl6. According to the cyclic voltammograms (CV) and electron spin resonance (ESR) spectra, increased conductivity is because of the higher degree of back charge transfer from MCl63- in TTF3InCl6 compared to TTF3SbCl6, which is due to the lower electronegativity of In, considering that the only difference between the two compounds is the center metal.

3.
Inorg Chem ; 60(7): 5376-5382, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33764780

ABSTRACT

Producing more than one structure from the same set of metal and ligand precursors will grant structural diversity in metal-organic framework (MOF) systems. One of the biggest obstacles of getting structural diversity for the late transition metals is that the coordination mode is pretty much fixed by nature. Herein, we show that two different coordination modes to Cu(II) are possible for flexible ligands containing hydrophilic terminal groups through solvent guidance. It is demonstrated that trans,trans-muconic acid (H2muco) ligands coordinate to Cu(II) to form Cu(II) muconate MOFs having a 1D chain structure and a 2D plane structure in water-rich and DMF-rich water-DMF mixed solvent systems, respectively. It is suggested that the interaction between ligands and solvent is responsible for the selective coordination. A similar result was observed from the attempts using the fumaric acid ligand. Our results provide a new direction to obtain diverse secondary building units for the construction of diverse MOFs.

4.
Inorg Chem ; 60(17): 13262-13268, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34375084

ABSTRACT

A new oxo-bridged chromium-molybdenum heterometallic complex, O-CrMoHC ([Cr4(MoO4)2O2(OAc)4(DMF)4]·2DMF), was synthesized by using a simple solvothermal reaction. In this complex, the octahedrally coordinated Cr(III) and tetrahedrally coordinated Mo(VI) metal centers are bridged by oxo ligands. O-CrMoHC has in-plane π-conjugation systems, which are interconnected by noncoordinating DMF molecules. The crystals show anisotropic conductivity with respect to the crystal planes, and theoretical calculations were used to study their origins. The O-CrMoHC single crystals exhibited that a relatively high electrical conductivity with an average value of 5.37 × 10-7 S/cm was observed along the [01-1] direction, but the current level was very low along the [100] direction. This is the first report of anisotropic conductivity observed in the single crystal of a monomeric heterometallic complex.

5.
Nano Lett ; 20(1): 612-617, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31825627

ABSTRACT

Alkali metal doping is an essential process for developing organic superconductors. The conventional vapor-phase alkali metal doping, however, frequently suffers from low efficiency and poor reproducibility mainly due to the inhomogeneous reaction between alkali metal vapor and target organic molecule powder. To overcome this issue, here we developed a facile and highly reproducible solution-phase alkali metal doping (SPD) and successfully applied it to prepare potassium-doped fullerene (K3C60) superconductors. Different from the conventional vapor-phase alkali metal doping, the SPD method resulted in almost perfect diamagnetism with an unprecedented high shielding fraction (∼99.5%) with high reproducibility (>80%). It works well with popular commercially available solvents, like ammonia solution in THF, methylamine solution in THF, and even pure THF at room temperature. We believe that our highly facile and efficient SPD approach will be a great help for the finding of next-generation organic superconductors, especially searching for high-Tc organic superconductors.

6.
Angew Chem Int Ed Engl ; 59(38): 16436-16439, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32539211

ABSTRACT

Together with high conductivity, high flexibility is an important property required for next generation organic electronic components. Both properties are difficult to achieve together especially when the components are crystalline because of the intrinsic high brittleness of organic molecular crystals. We report an organic radical crystal system that has both high flexibility and high conductivity. The crystal consists of 9,10-bis(phenylethynyl)anthracene radical cation (BPEA.+ ) units, and shows flexibility under pressure with high conductivity in ambient condition exhibiting average conductivity of 2.68 S cm-1 when normal linear shape, as well as 2.43 S cm-1 when bent. The structural analysis reveals that both a short π-π distance (3.290 Å) between BPEA.+ units that are aligned along the crystal length direction, and the presence of PF6 - counter ions induce flexibility and high electrical conductivity.

7.
Angew Chem Int Ed Engl ; 57(17): 4717-4721, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29450956

ABSTRACT

The multistate redox-active/multi-interactive ligand 5,5',8,8'-tetra(4-pyridyl)-2,2'-(1,4-phenylene)bis-1H-perimidine (H2 TPP) was designed and synthesized. H2 TPP undergoes four one-electron oxidation steps, and was used for the preparation of a multistate redox-active coordination network in a solid-liquid interface reaction using molten Cd2+ salts. The multiple redox states of H2 TPP were confirmed spectroscopically by stepwise four-electron oxidation. Spectroscopic analysis indicated that the mixed-valence states of the ligand are class II on the UV/Vis/NIR timescale and borderline class II/class III on the ESR timescale.

8.
Inorg Chem ; 56(15): 8735-8738, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28703577

ABSTRACT

By changing the rate of evaporation, two kinds of crystalline films composed of redox-active porous coordination networks (1 and 2) were selectively prepared on a gold-patterned substrate using a DMF solution of 2,5,8-tri(4-pyridyl)1,3-diazaphenalene and Cd(NO3)2. We found the highly sensitive humidity sensing ability of film 1. Single crystal structures and infrared spectroscopic analyses before and after hydration of a single crystal of 1 revealed the sensing mechanism: exchange of nitrate ions with water on Cd atoms occurred in hydrated conditions to generate a conductive cationic network.

9.
J Am Chem Soc ; 138(6): 1776-9, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26816189

ABSTRACT

Cd-based coordination networks having channels were formed selectively by using a redox-active aromatic ligand 2,5,8-tri(4-pyridyl)1,3-diazaphenalene (TPDAP, H(+)1(-)). An electron-conductive network having a π-π stacking columnar structure of TPDAP formed in the presence of a trace amount of TPDAP radical (1(•)). In contrast, a nonconductive network having a dimer unit of H(+)1(-) formed in the absence of 1(•). These results suggest the presence of a unique oxidation mechanism of TPDAP induced by formation of H(+)1(-)-1(•) dimer, which was initiated by a trace amount of 1(•). The dimerization increased HOMO level of H(+)1(-) moiety within the dimer to generate further radicals that could not form when H(+)1(-) was well isolated in CH3OH.

10.
Chemistry ; 22(44): 15791-15799, 2016 Oct 24.
Article in English | MEDLINE | ID: mdl-27632939

ABSTRACT

Cucurbit[7]uril (CB[7]) is known to bind strongly to hydrophilic amino saccharide guests with exceptional α-anomer selectivities under aqueous conditions. Single-crystal X-ray crystallography and computational methods were used to elucidate the reason behind this interesting phenomenon. The crystal structures of protonated galactosamine (GalN) and glucosamine (GluN) complexes confirm the inclusion of α anomers inside CB[7] and disclose the details of the host-guest binding. Whereas computed gas-phase structures agree with these crystal structures, gas-phase binding free energies show preferences for the ß-anomer complexes over their α counterparts, in striking contrast to the experimental results under aqueous conditions. However, when the solvation effect is considered, the binding structures drastically change and the preference for the α anomers is recovered. The α anomers also tend to bind more tightly and leave less space in the CB[7] cavity toward inclusion of only one water molecule, whereas loosely bound ß anomers leave more space toward accommodating two water molecules, with markedly different hydrogen-bonding natures. Surprisingly, entropy seems to contribute significantly to both anomeric discrimination and binding. This suggests that of all the driving factors for the strong complexation of the hydrophilic amino saccharide guests, water mediation plays a crucial role in the anomer discrimination.

11.
ACS Appl Mater Interfaces ; 14(41): 46682-46694, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201338

ABSTRACT

Typical amorphous aerogels pose great potential for CO2 adsorbents with high surface areas and facile diffusion, but they lack well-defined porosity and specific selectivity, inhibiting utilization of their full functionality. To assign well-defined porous structures to aerogels, a hierarchical metal-organic aerogel (HMOA) is designed, which consists of well-defined micropores (d ∼ 1 nm) by coordinative integration with chromium(III) and organic ligands. Due to its hierarchical structure with intrinsically flexible coordination, the HMOA has excellent porous features of a high surface area and a reusable surface with appropriate binding energy for CO2 adsorption. The HMOA features high CO2 adsorption capacity, high CO2/N2 IAST selectivity, and vacuum-induced surface regenerability (100% through 20 cycles). Further, the HMOA could be prepared via simple ambient drying methods while retaining the microporous network. This unique surface-tension-resistant micropore formation and flexible coordination systems of HMOA make it a potential candidate for a CO2 adsorbent with industrial scalability and reproducibility.

12.
RSC Adv ; 11(34): 20992-20996, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-35479363

ABSTRACT

A kinetic overgrowth allowing organic molecular crystals in various morphologies is induced by temperature-dependent viscosity change of crystallization solution. By this strategy, concave cube and octapod fullerene C70 crystals were successfully obtained by antisolvent crystallization (ASC). The structural analysis of fullerene C70 crystals indicates that the morphological difference is the result of kinetic processes, which reveals that viscosity, the only variable that can change dynamics of solutes, has a significant influence on determining the morphology of crystals. The effect of solvent viscosity in the stage of crystal growth was investigated through time-dependent control experiments, which led to the proposal of a diffusion rate-based mechanism. Our findings suggest morphology control of organic crystals by diffusion rate control, which is scarcely known compared to inorganic crystals. This strategic method will promote the morphology controls of various organic molecular crystals, and boost the morphology-property relationship study.

13.
Commun Chem ; 4(1): 167, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-36697614

ABSTRACT

Bismuth-based organic frameworks (BiOFs) can display interesting phosphorescent properties, but the relationship between structure and optical activity remains underexplored. The structure-dependent phosphorescence properties in the BiOFs are investigated using different multidentate ligands. In-depth analysis of the luminescence properties confirms that the densely packed framework shows long-lasting phosphorescence at room temperature, owing to an efficient electron-hole separation. The combination of spectroscopic analysis and single-crystal structural analysis provides important insights into the emission control through BiOFs structural change, which can be a useful strategy for modulating the optical properties of various metal organic frameworks. Furthermore, taking the advantage of long-lasting phosphorescence, the potential usage as an eco-friendly photocatalyst is demonstrated.

14.
ACS Nano ; 14(10): 14146-14156, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33120505

ABSTRACT

Chiral organic optoelectronics using circularly polarized light (CPL) as the key element in the photonic signal has recently emerged as a next-generation photonic technology. However, it remains challenging to simultaneously achieve high polarization selectivity and superior optoelectronic performance. Supramolecular two-dimensional (2D) chiral organic single crystals may be good candidates for this purpose due to their defect-free nature, molecular diversity, and morphologies. Here, quasi-2D single crystals of chiral perylene diimides with parallelogram and triangle/hexagon morphologies have been selectively fabricated via self-assembly using different cosolvent systems. These materials exhibit amplified circular dichroism (CD) spectral signals, due to their molecular packing modes and supramolecular chirality. Through molecular surface n-doping using hydrazine, chiral single crystals exhibit electron mobility surpassing 1.0 cm2 V-1 s-1, which is one of the highest among chiral organic semiconductors, and excellent optoelectronic functions. Theoretical calculations reveal that the radical anions formed by n-doping increase the electron affinity and/or reduce the energy gap, thus facilitating electron transport. More importantly, the doped organic chiral crystals selectively discriminate CPL handedness with a high anisotropy factor of photoresponsivity (∼0.12). These results demonstrate that surface-doped quasi-2D chiral organic single crystals are highly promising for chiral optoelectronics.

15.
ACS Omega ; 4(19): 18423-18427, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31720545

ABSTRACT

We demonstrate an effective and facile method for the deposition of gold nanoparticles (AuNPs) on graphene by using spontaneous galvanic reaction. Despite the interest and importance of the hybrid structure of noble metal-deposited graphene has been considerably increased for its fundamental knowledge in chemical and physical sciences and for its various applications, the progress of this subject is very slow mainly because of the lack of synthetic methods for such structures, especially that are not free from chemical contamination and usage of complex and expensive equipment. Therefore, we developed a new method allowing chemically pure AuNPs/graphene hybrid structures employing galvanic reaction. The spontaneous galvanic reaction was derived from reductant/graphene/oxidant sandwich structures, such as Au ions/graphene/Ge wafer and Au ions/graphene/copper foil, by placing Au ion solution droplets on graphene transferred on a germanium wafer or as made graphene on Cu foil, respectively. According to scanning electron microscopy and atomic force microscopy results, it was confirmed that AuNPs were successfully formed on the graphene surface. This result implies two important points. One is that the formation of pure AuNPs on graphene is possible without using other chemicals frequently required for conventional NP preparation. The other one is that it was experimentally demonstrated that there are electronic communications between the oxidant and reductant that are separated by graphene, through which electrons can pass freely.

16.
ACS Appl Mater Interfaces ; 11(22): 20174-20182, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31045348

ABSTRACT

Chiral self-sorting has great potential for constructing new complex structures and determining chirality-dependent properties in multicomponent mixtures. However, it is still of great challenge to achieve high fidelity chiral self-discrimination. Besides, the researches on the coordination polymers or metal-organic frameworks for micro/nanooptoelectronics are still rare due to their low conductivity and difficulty in developing a rapid and simple scale-up synthetic method. Here, heterochiral supramolecular coordination networks (SCNs) were synthesized by the solvothermal reaction of naphthalene diimide enantiomers and cadmium iodide, using the chirality as a synthetic tuning parameter to control the morphologies. Intriguingly, heterochiral micro/nanocrystals exhibited photochromic and photodetecting properties. Furthermore, we also developed a simple and efficient doping method to enhance the conductivity and photoresponsivity of micro/nanocrystals using hydrazine. From experimental and theoretical studies, the mechanism was suggested as follows: the radicals in the singly occupied molecular orbital level of the ligands provide charge carriers that can undergo "through-space" transport between π-π stacked ligands and the electron transfer from adsorbed hydrazine to the SCNs results in reduction of energy gap, leading to increased conductivity. Our findings demonstrate a simple and powerful strategy for implementing coordination networks with redox ligands for micro/nanooptoelectronic applications.

17.
ACS Appl Mater Interfaces ; 10(40): 33773-33778, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30251820

ABSTRACT

Morphology-retained solid-state photoconversion of anthracene (AN) to 9,10-anthraquinone (PC-ANQ) and dipara-anthracene (PC-DPA) was accomplished by irradiating mercury lamp light to plate-shaped AN single crystal in oxygen and argon atmosphere, respectively. The photoconverted crystals retained the original plate shape morphology of the starting AN crystal, whereas the emission profile and crystal structure were significantly changed. The electrical conductivity of PC-ANQ crystal is 5 orders of magnitude greater than that of the starting AN crystal, whereas the PC-DPA crystal exhibits a decreased conductivity. The AN/PC-ANQ/PC-DPA heterostructures with smooth interface were successfully obtained by inducing the photoconversion only at the desired area.

18.
Sci Rep ; 8(1): 7617, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29769611

ABSTRACT

In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K2picene single crystal, while only parts of the crystal are doped and transformed into K2picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

19.
Nat Commun ; 9(1): 3933, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30258195

ABSTRACT

Chiral supramolecules have great potential for use in chiral recognition, sensing, and catalysis. Particularly, chiral supramolecular biocoordination polymers (SBCPs) provide a versatile platform for characterizing biorelated processes such as chirality transcription. Here, we selectively synthesize homochiral and heterochiral SBCPs, composed of chiral naphthalene diimide ligands and Zn ions, from enantiomeric and mixed R-ligands and S-ligands, respectively. Notably, we find that the chiral self-sorted SBCPs exhibit multifunctional properties, including photochromic, photoluminescent, photoconductive, and chemiresistive characteristics, thus can be used for various sensors. Specifically, these materials can be used for detecting hazardous amine materials due to the electron transfer from the amine to the SBCP surface and for enantioselectively sensing a chiral species naproxen due to the different binding energies with regard to their chirality. These results provide guidelines for the synthesis of chiral SBCPs and demonstrate their versatility and feasibility for use in various sensors covering photoactive, chemiresistive, and chiral sensors.


Subject(s)
Amino Acids/chemistry , Biosensing Techniques , Imides/chemistry , Naphthalenes/chemistry , Isomerism , Ligands , Photochemical Processes , Polymers/chemical synthesis
20.
Sci Rep ; 7(1): 2582, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566708

ABSTRACT

Synthesis of morphologically well-defined crystals of metalloporphyrin by direct crystallization based on conventional anti-solvent crystallization method without using any additives has been rarely reported. Herein, we demonstrate an unconventional and additive-free synthetic method named reverse anti-solvent crystallization method to achieve well-defined zinc-porphyrin cube crystals by reversing the order of the addition of solvents. The extended first solvation shell effect mechanism is therefore suggested to support the synthetic process by providing a novel kinetic route for reaching the local supersaturation environment depending on the order of addition of solvents, which turned out to be critical to achieve clean cube morphology of the crystal. We believe that our work not only extends fundamental knowledge about the kinetic process in binary solvent systems, but also enables great opportunities for shape-directing crystallization of various organic and organometallic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL