Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Eur J Med Chem ; 246: 114925, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36459758

ABSTRACT

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Because current treatments present several limitations, including long duration, variable efficacy and serious side effects, there is an urgent need to explore new antitrypanosomal drugs. The present study describes the hit-to-lead optimization of a 2-aminobenzimidazole hit 1 identified through in vitro phenotypic screening of a chemical library against intracellular Trypanosoma cruzi amastigotes, which focused on optimizing potency, selectivity, microsomal stability and lipophilicity. Multiparametric Structure-Activity Relationships were investigated using a set of 277 derivatives. Although the physicochemical and biological properties of the initial hits were improved, a combination of low kinetic solubility and in vitro cytotoxicity against mammalian cells prevented progression of the best compounds to an efficacy study using a mouse model of Chagas disease.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Animals , Trypanocidal Agents/chemistry , Chagas Disease/drug therapy , Structure-Activity Relationship , Mammals
2.
PLoS Negl Trop Dis ; 15(2): e0009196, 2021 02.
Article in English | MEDLINE | ID: mdl-33617566

ABSTRACT

Leishmaniasis is a major infectious disease with hundreds of thousands of new cases and over 20,000 deaths each year. The current drugs to treat this life-threatening infection have several drawbacks such as toxicity and long treatment regimens. A library of 1.8 million compounds, from which the hits reported here are publicly available, was screened against Leishmania infantum as part of an optimization program; a compound was found with a 2-aminobenzimidazole functionality presenting moderate potency, low metabolic stability and high lipophilicity. Several rounds of synthesis were performed to incorporate chemical groups capable of reducing lipophilicity and clearance, leading to the identification of compounds that are active against different parasite strains and have improved in vitro properties. As a result of this optimization program, a group of compounds was further tested in anticipation of in vivo evaluation. In vivo tests were carried out with compounds 29 (L. infantum IC50: 4.1 µM) and 39 (L. infantum IC50: 0.5 µM) in an acute L. infantum VL mouse model, which showed problems of poor exposure and lack of efficacy, despite the good in vitro potency.


Subject(s)
Benzimidazoles/pharmacology , Drug Discovery , Leishmania infantum/drug effects , Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/pharmacology , Benzimidazoles/chemistry , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred BALB C , Microsomes, Liver
SELECTION OF CITATIONS
SEARCH DETAIL