Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Exp Biol ; 225(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35380003

ABSTRACT

Insects that naturally tolerate internal freezing produce complex mixtures of multiple cryoprotectants (CPs). Better knowledge on composition of these mixtures, and on the mechanisms of individual CP interactions, could inspire development of laboratory CP formulations optimized for cryopreservation of cells and other biological material. Here, we identify and quantify (using high resolution mass spectrometry) a range of putative CPs in larval tissues of a subarctic fly, Chymomyza costata, which survives long-term cryopreservation in liquid nitrogen. The CPs proline, trehalose, glutamine, asparagine, glycine betaine, glycerophosphoethanolamine, glycerophosphocholine and sarcosine accumulate in hemolymph in a ratio of 313:108:55:26:6:4:2.9:0.5 mmol l-1. Using calorimetry, we show that artificial mixtures, mimicking the concentrations of major CPs in hemolymph of freeze-tolerant larvae, suppress the melting point of water and significantly reduce the ice fraction. We demonstrate in a bioassay that mixtures of CPs administered through the diet act synergistically rather than additively to enable cryopreservation of otherwise freeze-sensitive larvae. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we show that during slow extracellular freezing trehalose becomes concentrated in partially dehydrated hemolymph where it stimulates transition to the amorphous glass phase. In contrast, proline moves to the boundary between extracellular ice and dehydrated hemolymph and tissues where it probably forms a layer of dense viscoelastic liquid. We propose that amorphous glass and viscoelastic liquids may protect macromolecules and cells from thermomechanical shocks associated with freezing and transfer into and out of liquid nitrogen.


Subject(s)
Ice , Trehalose , Animals , Cryopreservation/methods , Cryopreservation/veterinary , Cryoprotective Agents , Freezing , Larva , Nitrogen , Proline
2.
Proc Natl Acad Sci U S A ; 114(32): 8532-8537, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28720705

ABSTRACT

Insects often overcome unfavorable seasons in a hormonally regulated state of diapause during which their activity ceases, development is arrested, metabolic rate is suppressed, and tolerance of environmental stress is bolstered. Diapausing insects pass through a stereotypic succession of eco-physiological phases termed "diapause development." The phasing is varied in the literature, and the whole concept is sometimes criticized as being too artificial. Here we present the results of transcriptional profiling using custom microarrays representing 1,042 genes in the drosophilid fly, Chymomyza costata Fully grown, third-instar larvae programmed for diapause by a photoperiodic (short-day) signal were assayed as they traversed the diapause developmental program. When analyzing the gradual dynamics in the transcriptomic profile, we could readily distinguish distinct diapause developmental phases associated with induction/initiation, maintenance, cold acclimation, and termination by cold or by photoperiodic signal. Accordingly, each phase is characterized by a specific pattern of gene expression, supporting the physiological relevance of the concept of diapause phasing. Further, we have dissected in greater detail the changes in transcript levels of elements of several signaling pathways considered critical for diapause regulation. The phase of diapause termination is associated with enhanced transcript levels in several positive elements stimulating direct development (the 20-hydroxyecdysone pathway: Ecr, Shd, Broad; the Wnt pathway: basket, c-jun) that are countered by up-regulation in some negative elements (the insulin-signaling pathway: Ilp8, PI3k, Akt; the target of rapamycin pathway: Tsc2 and 4EBP; the Wnt pathway: shaggy). We speculate such up-regulations may represent the early steps linked to termination of diapause programming.


Subject(s)
Diapause, Insect/genetics , Drosophilidae/genetics , Animals , Circadian Rhythm/genetics , Diapause/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/genetics , Insect Proteins/genetics , Insecta/genetics , Larva/metabolism , Oligonucleotide Array Sequence Analysis/methods , Photoperiod , Transcriptome
3.
J Exp Biol ; 219(Pt 15): 2358-67, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27489218

ABSTRACT

The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration.


Subject(s)
Adaptation, Physiological/drug effects , Arginine/pharmacology , Drosophila melanogaster/physiology , Food Additives/pharmacology , Freezing , Proline/pharmacology , Acclimatization/drug effects , Animals , Diet , Drosophila melanogaster/drug effects , Larva , Metabolomics , Principal Component Analysis
4.
BMC Genomics ; 16: 720, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26391666

ABSTRACT

BACKGROUND: Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. RESULTS: Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild-type (photoperiodic) and NPD-mutant (non-photoperiodic) strains of C. costata. CONCLUSIONS: Our study revealed several strong candidate genes for follow-up functional studies. Candidate genes code for upstream regulators of a complex change of gene expression, which leads to phenotypic switch from direct ontogeny to larval diapause.


Subject(s)
Drosophilidae/genetics , Larva/genetics , Transcription, Genetic , Animals , Cluster Analysis , Drosophilidae/embryology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Reproducibility of Results , Sequence Analysis, RNA , Transcriptome
5.
Metabolites ; 12(2)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208237

ABSTRACT

Many cold-acclimated insects accumulate high concentrations of low molecular weight cryoprotectants (CPs) in order to tolerate low subzero temperatures or internal freezing. The sources from which carbon skeletons for CP biosynthesis are driven, and the metabolic reprogramming linked to cold acclimation, are not sufficiently understood. Here we aim to resolve the metabolism of putative CPs by mapping relative changes in concentration of 56 metabolites and expression of 95 relevant genes as larvae of the drosophilid fly, Chymomyza costata transition from a freeze sensitive to a freeze tolerant phenotype during gradual cold acclimation. We found that C. costata larvae may directly assimilate amino acids proline and glutamate from diet to acquire at least half of their large proline stocks (up to 55 µg per average 2 mg larva). Metabolic conversion of internal glutamine reserves that build up in early diapause may explain the second half of proline accumulation, while the metabolic conversion of ornithine and the degradation of larval collagens and other proteins might be two additional minor sources. Next, we confirm that glycogen reserves represent the major source of glucose units for trehalose synthesis and accumulation (up to 27 µg per larva), while the diet may serve as an additional source. Finally, we suggest that interconversions of phospholipids may release accumulated glycero-phosphocholine (GPC) and -ethanolamine (GPE). Choline is a source of accumulated methylamines: glycine-betaine and sarcosine. The sum of methylamines together with GPE and GPC represents approximately 2 µg per larva. In conclusion, we found that food ingestion may be an important source of carbon skeletons for direct assimilation of, and/or metabolic conversions to, CPs in a diapausing and cold-acclimated insect. So far, the cold-acclimation- linked accumulation of CPs in insects was considered to be sourced mainly from internal macromolecular reserves.

6.
J Insect Physiol ; 113: 24-32, 2019.
Article in English | MEDLINE | ID: mdl-30653982

ABSTRACT

Analysis of sublethal responses in cold-stressed insects can provide important information about fitness costs and a better understanding of the physiological mechanisms used to prevent and/or to cope with cold injury. Yet, such responses are understudied and often neglected in the literature. Here, we analyzed the effects of cold stress applied to larvae on the mortality/survival and fitness parameters of survivor adults of the vinegar fly, Drosophila melanogaster. Third instar larvae (either cold-sensitive or cold-acclimated) were exposed to either supercooling or freezing stress, both at -5 °C. A whole array of sublethal effects were observed, from mortality that occurs with some delay after cold stress, through delayed development to the pupal stage, to shortened life-span of the adult, and decreased female fecundity. Taking the sublethal effects into account improves the ecological meaningfulness of cold hardiness assay outcomes. For instance, we observed that although more than 80% of cold-acclimated larvae survive freezing to -5 °C, less than 10% survive until adulthood, and survivor females exhibit more than 50% reduction in their fecundity relative to controls. Female fecundity was positively correlated with dry mass and negatively correlated with total protein and glycogen stores. Hence, these parameters may serve as good predictors of survivor adult female fecundity. Further, we provide the concept of a two-component defense system, which (based on analysis of sublethal effects on fitness parameters) distinguishes between physiological mechanisms that help insects to resist (reduce or avoid) or tolerate (survive or repair) injuries linked to cold stress.


Subject(s)
Drosophila melanogaster/physiology , Genetic Fitness , Animals , Cold Temperature , Drosophila melanogaster/growth & development , Female , Larva/physiology , Pupa/physiology , Stress, Physiological
7.
Sci Rep ; 6: 32346, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27573891

ABSTRACT

The cryopreservation techniques proposed for embryos of the fruit fly Drosophila melanogaster are not yet ready for practical use. Alternative methods for long-term storage of D. melanogaster strains, although urgently needed, do not exist. Herein, we describe a narrow interval of low temperatures under which the larvae of D. melanogaster can be stored in quiescence for up to two months. The development of larvae was arrested at the pre-wandering stage under fluctuating thermal regime (FTR), which simultaneously resulted in diminishing the accumulation of indirect chill injuries. Our physiological, metabolomic, and transcriptomic analyses revealed that compared to larvae stored at constant low temperatures, the larvae stored under FTR conditions were able to decrease the rates of depletion of energy substrates, exploited brief warm episodes of FTR for homeostatic control of metabolite levels, and more efficiently exerted protection against oxidative damage.


Subject(s)
Cold Temperature/adverse effects , Cryobiology , Drosophila melanogaster/physiology , Larva/physiology , Animals , Cryopreservation , Drosophila melanogaster/genetics , Larva/genetics
8.
PLoS One ; 10(6): e0128976, 2015.
Article in English | MEDLINE | ID: mdl-26034990

ABSTRACT

BACKGROUND: The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. PRINCIPAL FINDINGS: We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. CONCLUSIONS: The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperatures below -8°C.


Subject(s)
Cold Temperature , Drosophila Proteins/physiology , Drosophila melanogaster/physiology , HSP70 Heat-Shock Proteins/physiology , Stress, Physiological , Acclimatization , Animals , Cold-Shock Response/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , RNA, Messenger/metabolism
9.
PLoS One ; 6(9): e25025, 2011.
Article in English | MEDLINE | ID: mdl-21957472

ABSTRACT

BACKGROUND: Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. PRINCIPAL FINDINGS: We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50)) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt(50) (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. CONCLUSION: Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring.


Subject(s)
Acclimatization , Cold Temperature , Drosophila melanogaster/physiology , Metabolome , Amino Acids/metabolism , Animals , Carbohydrate Metabolism , Cold Temperature/adverse effects , Drosophila melanogaster/metabolism , Fatty Acids/metabolism , Female , Freezing/adverse effects , Larva/metabolism , Larva/physiology , Polymers/metabolism , Survival Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL