Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32916129

ABSTRACT

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome/genetics , Gene Expression Regulation/genetics , Irritable Bowel Syndrome/metabolism , Metabolome , Purines/metabolism , Transcriptome/genetics , Animals , Bile Acids and Salts/metabolism , Biopsy , Butyrates/metabolism , Chromatography, Liquid , Cross-Sectional Studies , Epigenomics , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Gene Expression Regulation/physiology , Host Microbial Interactions/genetics , Humans , Hypoxanthine/metabolism , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/microbiology , Longitudinal Studies , Male , Metabolome/physiology , Mice , Observational Studies as Topic , Prospective Studies , Software , Tandem Mass Spectrometry , Transcriptome/physiology
2.
Cell ; 174(6): 1406-1423.e16, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30193113

ABSTRACT

Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche. Contrary to homeostasis, antibiotic perturbation enhanced probiotics colonization in the human mucosa but only mildly improved colonization in mice. Compared to spontaneous post-antibiotic recovery, probiotics induced a markedly delayed and persistently incomplete indigenous stool/mucosal microbiome reconstitution and host transcriptome recovery toward homeostatic configuration, while aFMT induced a rapid and near-complete recovery within days of administration. In vitro, Lactobacillus-secreted soluble factors contributed to probiotics-induced microbiome inhibition. Collectively, potential post-antibiotic probiotic benefits may be offset by a compromised gut mucosal recovery, highlighting a need of developing aFMT or personalized probiotic approaches achieving mucosal protection without compromising microbiome recolonization in the antibiotics-perturbed host.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Probiotics/administration & dosage , Adolescent , Adult , Aged , Animals , Fecal Microbiota Transplantation , Feces/microbiology , Female , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Lactobacillus/drug effects , Lactobacillus/genetics , Lactobacillus/isolation & purification , Lactococcus/genetics , Lactococcus/isolation & purification , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Young Adult
3.
Cell ; 167(6): 1495-1510.e12, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27912059

ABSTRACT

The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.


Subject(s)
Circadian Rhythm , Colon/microbiology , Gastrointestinal Microbiome , Transcriptome , Animals , Chromatin/metabolism , Colon/metabolism , Germ-Free Life , Liver/metabolism , Mice , Microscopy, Electron, Scanning
5.
Cell ; 163(6): 1428-43, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26638072

ABSTRACT

Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.


Subject(s)
Colon/immunology , Colon/microbiology , Inflammasomes/immunology , Microbiota , Receptors, Cell Surface/metabolism , Signal Transduction , Animals , Antimicrobial Cationic Peptides , Colitis/chemically induced , Colitis/drug therapy , Colon/metabolism , Dysbiosis/metabolism , Germ-Free Life , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Interleukin-18/immunology , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/genetics , Taurine/administration & dosage
6.
Cell ; 163(5): 1079-1094, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26590418

ABSTRACT

Elevated postprandial blood glucose levels constitute a global epidemic and a major risk factor for prediabetes and type II diabetes, but existing dietary methods for controlling them have limited efficacy. Here, we continuously monitored week-long glucose levels in an 800-person cohort, measured responses to 46,898 meals, and found high variability in the response to identical meals, suggesting that universal dietary recommendations may have limited utility. We devised a machine-learning algorithm that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in this cohort and showed that it accurately predicts personalized postprandial glycemic response to real-life meals. We validated these predictions in an independent 100-person cohort. Finally, a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postprandial responses and consistent alterations to gut microbiota configuration. Together, our results suggest that personalized diets may successfully modify elevated postprandial blood glucose and its metabolic consequences. VIDEO ABSTRACT.


Subject(s)
Algorithms , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Postprandial Period , Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/microbiology , Diet, Diabetic , Gastrointestinal Microbiome , Humans , Smartphone
7.
Cell ; 159(3): 514-29, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25417104

ABSTRACT

All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity. Consequently, jet-lag-induced dysbiosis in both mice and humans promotes glucose intolerance and obesity that are transferrable to germ-free mice upon fecal transplantation. Together, these findings provide evidence of coordinated metaorganism diurnal rhythmicity and offer a microbiome-dependent mechanism for common metabolic disturbances in humans with aberrant circadian rhythms, such as those documented in shift workers and frequent flyers.


Subject(s)
Circadian Clocks , Circadian Rhythm , Glucose Intolerance , Microbiota , Animals , Dysbiosis/microbiology , Dysbiosis/physiopathology , Feeding Behavior , Homeostasis , Humans , Jet Lag Syndrome/physiopathology , Metabolic Diseases/microbiology , Metabolic Diseases/physiopathology , Mice , Obesity/metabolism , Sleep
8.
Nature ; 588(7836): 135-140, 2020 12.
Article in English | MEDLINE | ID: mdl-33177712

ABSTRACT

The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites-in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites.


Subject(s)
Diet , Gastrointestinal Microbiome/physiology , Metabolome/genetics , Serum/metabolism , Adult , Bread , Cohort Studies , Female , Healthy Volunteers , Humans , Life Style , Machine Learning , Male , Metabolomics , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Oxygenases/genetics , Reference Standards , Reproducibility of Results , Seasons
9.
Genome Res ; 32(3): 558-568, 2022 03.
Article in English | MEDLINE | ID: mdl-34987055

ABSTRACT

Patterns of sequencing coverage along a bacterial genome-summarized by a peak-to-trough ratio (PTR)-have been shown to accurately reflect microbial growth rates, revealing a new facet of microbial dynamics and host-microbe interactions. Here, we introduce Compute PTR (CoPTR): a tool for computing PTRs from complete reference genomes and assemblies. Using simulations and data from growth experiments in simple and complex communities, we show that CoPTR is more accurate than the current state of the art while also providing more PTR estimates overall. We further develop a theory formalizing a biological interpretation for PTRs. Using a reference database of 2935 species, we applied CoPTR to a case-control study of 1304 metagenomic samples from 106 individuals with inflammatory bowel disease. We show that growth rates are personalized, are only loosely correlated with relative abundances, and are associated with disease status. We conclude by showing how PTRs can be combined with relative abundances and metabolomics to investigate their effect on the microbiome.


Subject(s)
Metagenomics , Microbiota , Case-Control Studies , Genome, Bacterial , Humans , Metagenome , Microbiota/genetics
10.
Nature ; 568(7750): 43-48, 2019 04.
Article in English | MEDLINE | ID: mdl-30918406

ABSTRACT

Differences in the presence of even a few genes between otherwise identical bacterial strains may result in critical phenotypic differences. Here we systematically identify microbial genomic structural variants (SVs) and find them to be prevalent in the human gut microbiome across phyla and to replicate in different cohorts. SVs are enriched for CRISPR-associated and antibiotic-producing functions and depleted from housekeeping genes, suggesting that they have a role in microbial adaptation. We find multiple associations between SVs and host disease risk factors, many of which replicate in an independent cohort. Exploring genes that are clustered in the same SV, we uncover several possible mechanistic links between the microbiome and its host, including a region in Anaerostipes hadrus that encodes a composite inositol catabolism-butyrate biosynthesis pathway, the presence of which is associated with lower host metabolic disease risk. Overall, our results uncover a nascent layer of variability in the microbiome that is associated with microbial adaptation and host health.


Subject(s)
Bacteria/genetics , Disease Susceptibility/microbiology , Gastrointestinal Microbiome/genetics , Genes, Bacterial/genetics , Genetic Variation , Health , Host Microbial Interactions/genetics , Adaptation, Physiological/genetics , Bacteria/classification , Bacteria/growth & development , Bacteria/metabolism , Butyrates/metabolism , Cohort Studies , Ecosystem , Eubacterium/genetics , Eubacterium/metabolism , Feces/microbiology , Gastrointestinal Microbiome/physiology , Host Microbial Interactions/physiology , Humans , Inositol/metabolism , Metagenomics , Microbial Viability/genetics , Risk Factors
11.
Nature ; 555(7695): 210-215, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29489753

ABSTRACT

Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.


Subject(s)
Diet/statistics & numerical data , Environment , Family Characteristics , Gastrointestinal Microbiome/genetics , Life Style , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Gene-Environment Interaction , Glucose/metabolism , Healthy Volunteers , Heredity/genetics , Humans , Israel , Male , Middle Aged , Obesity/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , RNA, Bacterial/analysis , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/analysis , Reproducibility of Results , Twin Studies as Topic , Twins/genetics , Young Adult
12.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33472859

ABSTRACT

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Subject(s)
COVID-19/microbiology , Hygiene Hypothesis , Microbiota , Aged , Anti-Infective Agents/therapeutic use , COVID-19/mortality , Eating , Female , Humans , Infant , Infection Control/methods , Male , Microbiota/drug effects , Physical Distancing , Pregnancy
13.
Nature ; 595(7867): 355-357, 2021 07.
Article in English | MEDLINE | ID: mdl-34262197
14.
Nature ; 514(7521): 181-6, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25231862

ABSTRACT

Non-caloric artificial sweeteners (NAS) are among the most widely used food additives worldwide, regularly consumed by lean and obese individuals alike. NAS consumption is considered safe and beneficial owing to their low caloric content, yet supporting scientific data remain sparse and controversial. Here we demonstrate that consumption of commonly used NAS formulations drives the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects are abrogated by antibiotic treatment, and are fully transferrable to germ-free mice upon faecal transplantation of microbiota configurations from NAS-consuming mice, or of microbiota anaerobically incubated in the presence of NAS. We identify NAS-altered microbial metabolic pathways that are linked to host susceptibility to metabolic disease, and demonstrate similar NAS-induced dysbiosis and glucose intolerance in healthy human subjects. Collectively, our results link NAS consumption, dysbiosis and metabolic abnormalities, thereby calling for a reassessment of massive NAS usage.


Subject(s)
Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Glucose Intolerance/chemically induced , Glucose Intolerance/microbiology , Microbiota/drug effects , Sweetening Agents/adverse effects , Animals , Anti-Bacterial Agents/pharmacology , Aspartame/adverse effects , Body Weight/drug effects , Diet, High-Fat , Dietary Fats/pharmacology , Feces/microbiology , Female , Germ-Free Life , Glucose/metabolism , Glucose Intolerance/metabolism , Humans , Male , Metabolic Syndrome/chemically induced , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Mice , Mice, Inbred C57BL , Saccharin/administration & dosage , Saccharin/adverse effects , Sucrose/adverse effects , Sucrose/analogs & derivatives , Waist-Hip Ratio
15.
Proc Natl Acad Sci U S A ; 114(22): E4472-E4481, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28507131

ABSTRACT

Age-related macular degeneration (AMD) is the major cause of blindness in developed nations. AMD is characterized by retinal pigmented epithelial (RPE) cell dysfunction and loss of photoreceptor cells. Epidemiologic studies indicate important contributions of dietary patterns to the risk for AMD, but the mechanisms relating diet to disease remain unclear. Here we investigate the effect on AMD of isocaloric diets that differ only in the type of dietary carbohydrate in a wild-type aged-mouse model. The consumption of a high-glycemia (HG) diet resulted in many AMD features (AMDf), including RPE hypopigmentation and atrophy, lipofuscin accumulation, and photoreceptor degeneration, whereas consumption of the lower-glycemia (LG) diet did not. Critically, switching from the HG to the LG diet late in life arrested or reversed AMDf. LG diets limited the accumulation of advanced glycation end products, long-chain polyunsaturated lipids, and their peroxidation end-products and increased C3-carnitine in retina, plasma, or urine. Untargeted metabolomics revealed microbial cometabolites, particularly serotonin, as protective against AMDf. Gut microbiota were responsive to diet, and we identified microbiota in the Clostridiales order as being associated with AMDf and the HG diet, whereas protection from AMDf was associated with the Bacteroidales order and the LG diet. Network analysis revealed a nexus of metabolites and microbiota that appear to act within a gut-retina axis to protect against diet- and age-induced AMDf. The findings indicate a functional interaction between dietary carbohydrates, the metabolome, including microbial cometabolites, and AMDf. Our studies suggest a simple dietary intervention that may be useful in patients to arrest AMD.


Subject(s)
Blood Glucose/metabolism , Gastrointestinal Microbiome/physiology , Glycemic Index/physiology , Macular Degeneration/metabolism , Retina/metabolism , Animals , Glycation End Products, Advanced/metabolism , Metabolome/physiology , Metabolomics , Mice
16.
ArXiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38883233

ABSTRACT

Cross-validation is a common method for estimating the predictive performance of machine learning models. In a data-scarce regime, where one typically wishes to maximize the number of instances used for training the model, an approach called 'leave-one-out cross-validation' is often used. In this design, a separate model is built for predicting each data instance after training on all other instances. Since this results in a single test data point available per model trained, predictions are aggregated across the entire dataset to calculate common rank-based performance metrics such as the area under the receiver operating characteristic or precision-recall curves. In this work, we demonstrate that this approach creates a negative correlation between the average label of each training fold and the label of its corresponding test instance, a phenomenon that we term distributional bias. As machine learning models tend to regress to the mean of their training data, this distributional bias tends to negatively impact performance evaluation and hyperparameter optimization. We show that this effect generalizes to leave-P-out cross-validation and persists across a wide range of modeling and evaluation approaches, and that it can lead to a bias against stronger regularization. To address this, we propose a generalizable rebalanced cross-validation approach that corrects for distributional bias. We demonstrate that our approach improves cross-validation performance evaluation in synthetic simulations and in several published leave-one-out analyses.

17.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405914

ABSTRACT

Every step in common microbiome profiling protocols has variable efficiency for each microbe. For example, different DNA extraction kits may have different efficiency for Gram-positive and -negative bacteria. These variable efficiencies, combined with technical variation, create strong processing biases, which impede the identification of signals that are reproducible across studies and the development of generalizable and biologically interpretable prediction models. "Batch-correction" methods have been used to alleviate these issues computationally with some success. However, many make strong parametric assumptions which do not necessarily apply to microbiome data or processing biases, or require the use of an outcome variable, which risks overfitting. Lastly and importantly, existing transformations used to correct microbiome data are largely non-interpretable, and could, for example, introduce values to features that were initially mostly zeros. Altogether, processing bias currently compromises our ability to glean robust and generalizable biological insights from microbiome data. Here, we present DEBIAS-M (Domain adaptation with phenotype Estimation and Batch Integration Across Studies of the Microbiome), an interpretable framework for inference and correction of processing bias, which facilitates domain adaptation in microbiome studies. DEBIAS-M learns bias-correction factors for each microbe in each batch that simultaneously minimize batch effects and maximize cross-study associations with phenotypes. Using benchmarks of HIV and colorectal cancer classification from gut microbiome data, and cervical neoplasia prediction from cervical microbiome data, we demonstrate that DEBIAS-M outperforms batch-correction methods commonly used in the field. Notably, we show that the inferred bias-correction factors are stable, interpretable, and strongly associated with specific experimental protocols. Overall, we show that DEBIAS-M allows for better modeling of microbiome data and identification of interpretable signals that are reproducible across studies.

18.
Cancer Epidemiol Biomarkers Prev ; 33(3): 371-380, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38117184

ABSTRACT

BACKGROUND: Esophageal adenocarcinoma (EAC) is rising in incidence, and established risk factors do not explain this trend. Esophageal microbiome alterations have been associated with Barrett's esophagus (BE) and dysplasia and EAC. The oral microbiome is tightly linked to the esophageal microbiome; this study aimed to identify salivary microbiome-related factors associated with BE, dysplasia, and EAC. METHODS: Clinical data and oral health history were collected from patients with and without BE. The salivary microbiome was characterized, assessing differential relative abundance of taxa by 16S rRNA gene sequencing and associations between microbiome composition and clinical features. Microbiome metabolic modeling was used to predict metabolite production. RESULTS: A total of 244 patients (125 non-BE and 119 BE) were analyzed. Patients with high-grade dysplasia (HGD)/EAC had a significantly higher prevalence of tooth loss (P = 0.001). There were significant shifts with increased dysbiosis associated with HGD/EAC, independent of tooth loss, with the largest shifts within the genus Streptococcus. Modeling predicted significant shifts in the microbiome metabolic capacities, including increases in L-lactic acid and decreases in butyric acid and L-tryptophan production in HGD/EAC. CONCLUSIONS: Marked dysbiosis in the salivary microbiome is associated with HGD and EAC, with notable increases within the genus Streptococcus and accompanying changes in predicted metabolite production. Further work is warranted to identify the biological significance of these alterations and to validate metabolic shifts. IMPACT: There is an association between oral dysbiosis and HGD/EAC. Further work is needed to establish the diagnostic, predictive, and causal potential of this relationship.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Microbiota , Tooth Loss , Humans , Dysbiosis , RNA, Ribosomal, 16S/genetics , Butyric Acid
19.
Oncogene ; 43(15): 1127-1148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396294

ABSTRACT

In 2020, we identified cancer-specific microbial signals in The Cancer Genome Atlas (TCGA) [1]. Multiple peer-reviewed papers independently verified or extended our findings [2-12]. Given this impact, we carefully considered concerns by Gihawi et al. [13] that batch correction and database contamination with host sequences artificially created the appearance of cancer type-specific microbiomes. (1) We tested batch correction by comparing raw and Voom-SNM-corrected data per-batch, finding predictive equivalence and significantly similar features. We found consistent results with a modern microbiome-specific method (ConQuR [14]), and when restricting to taxa found in an independent, highly-decontaminated cohort. (2) Using Conterminator [15], we found low levels of human contamination in our original databases (~1% of genomes). We demonstrated that the increased detection of human reads in Gihawi et al. [13] was due to using a newer human genome reference. (3) We developed Exhaustive, a method twice as sensitive as Conterminator, to clean RefSeq. We comprehensively host-deplete TCGA with many human (pan)genome references. We repeated all analyses with this and the Gihawi et al. [13] pipeline, and found cancer type-specific microbiomes. These extensive re-analyses and updated methods validate our original conclusion that cancer type-specific microbial signatures exist in TCGA, and show they are robust to methodology.


Subject(s)
Microbiota , Neoplasms , Humans , Neoplasms/genetics , Microbiota/genetics
20.
bioRxiv ; 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-36711990

ABSTRACT

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. The vaginal microbiome has been associated with PTB, yet the mechanisms underlying this association are not fully understood. Understanding microbial genetic adaptations to selective pressures, especially those related to the host, may yield new insights into these associations. To this end, we analyzed metagenomic data from 705 vaginal samples collected longitudinally during pregnancy from 40 women who delivered preterm spontaneously and 135 term controls from the Multi-Omic Microbiome Study-Pregnancy Initiative (MOMS-PI). We find that the vaginal microbiome of pregnancies that ended preterm exhibits unique genetic profiles. It is more genetically diverse at the species level, a result which we validate in an additional cohort, and harbors a higher richness and diversity of antimicrobial resistance genes, likely promoted by transduction. Interestingly, we find that Gardnerella species, a group of central vaginal pathobionts, are driving this higher genetic diversity, particularly during the first half of the pregnancy. We further present evidence that Gardnerella spp. undergoes more frequent recombination and stronger purifying selection in genes involved in lipid metabolism. Overall, our results reveal novel associations between the vaginal microbiome and PTB using population genetics analyses, and suggest that evolutionary processes acting on the vaginal microbiome may play a vital role in adverse pregnancy outcomes such as preterm birth.

SELECTION OF CITATIONS
SEARCH DETAIL