Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 125(3): 033001, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745429

ABSTRACT

Laser excitation and x-ray spectroscopy are combined to settle a long-standing question in persistent luminescence. A reversible electron transfer is demonstrated, controlled by light and showing the same kinetics as the persistent luminescence. Exposure to violet light induces charging by oxidation of the excited Eu^{2+} while Dy^{3+} is simultaneously reduced. Oppositely, detrapping of Dy^{2+} occurs at ambient temperature or by infrared illumination, yielding afterglow or optically stimulated luminescence, respectively.

2.
Phys Chem Chem Phys ; 19(13): 9075-9085, 2017 Mar 29.
Article in English | MEDLINE | ID: mdl-28304065

ABSTRACT

CaZnOS:Mn2+ is a rare-earth-free luminescent compound with an orange broadband emission at 612 nm, featuring pressure sensing capabilities, often explained by defect levels where energy can be stored. Despite recent efforts from experimental and theoretical points of view, the underlying luminescence mechanisms in this phosphor still lack a profound understanding. By the evaluation of thermoluminescence as a function of the charging wavelength, we probe the defect levels allowing energy storage. Multiple trap depths and trapping routes are found, suggesting predominantly local trapping close to Mn2+ impurities. We demonstrate that this phosphor shows mechanoluminescence which is unexpectedly stable at high temperature (up to 200 °C), allowing pressure sensing in a wide temperature range. Next, we correlate the spectroscopic results with a theoretical study of the electronic structure and stability of the Mn defects in CaZnOS. DFT calculations at the PBE+U level indicate that Mn impurities are incorporated on the Zn site in a divalent charge state, which is confirmed by X-ray absorption spectroscopy (XAS). Ligand-to-metal charge transfer (LMCT) is predicted from the location of the Mn impurity levels, obtained from the calculated defect formation energies. This LMCT proves to be a very efficient pathway for energy storage. The excited state landscape of the Mn2+ 3d5 electron configuration is assessed through the spin-correlated crystal field and a good correspondence with the emission and excitation spectra is found. In conclusion, studying phosphors at both a single-particle level (i.e. via calculation of defect formation energies) and a many-particle level (i.e. by accurately localizing the excited states) is necessary to obtain a complete picture of luminescent defects, as demonstrated in the case of CaZnOS:Mn2+.

3.
Phys Chem Chem Phys ; 15(22): 8678-83, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23580169

ABSTRACT

Due to its bright yellow-to-red emission, europium doped Ca2SiS4 is a very interesting material for phosphor converted light emitting diodes. The emission spectrum is highly dependent on the Eu concentration and can consist of more than one emission band. We combined X-ray absorption fine structure and photoluminescence measurements to analyze the structure of europium centers in (Ca,Eu)2SiS4 luminescent powders. This paper provides an explanation for the concentration dependency of the emission spectra. We find that at low dopant concentrations a large fraction of trivalent europium ions is unexpectedly present in the powders. These trivalent europium ions tend to form defect clusters in the luminescent powders. Furthermore we observe a preferential substitution of the europium ions over the two different substitutional Ca sites, which changes upon increasing the dopant concentration. At high dopant concentration, the powder crystallizes in the monoclinic Eu2SiS4 structure. Once more a preferential substitution of the europium ions is observed. Summarizing, the influence of the concentration on the emission spectrum is explained by a difference in preferential occupation of the Eu ions in the lattice.


Subject(s)
Europium/chemistry , Luminescence , Silicates/chemistry , Sulfhydryl Compounds/chemistry , X-Ray Absorption Spectroscopy
4.
ACS Appl Mater Interfaces ; 10(22): 18845-18856, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29750494

ABSTRACT

Traditional light sources, e.g., incandescent and fluorescent lamps, are currently being replaced by white light-emitting diodes (wLEDs) because of their improved efficiency, prolonged lifetime, and environmental friendliness. Much effort has recently been spent to the development of Mn4+-doped fluoride phosphors that can enhance the color gamut in displays and improve the color rendering index, luminous efficacy of the radiation, and correlated color temperature of wLEDs used for lighting. Purity, stability, and degradation of fluoride phosphors are, however, rarely discussed. Nevertheless, the typical wet chemical synthesis routes (involving hydrogen fluoride (HF)) and the large variety of possible Mn valence states often lead to impurities that drastically influence the performance and stability of these phosphors. In this article, the origins and consequences of impurities formed during synthesis and aging of K2SiF6:Mn4+ are revealed. Both crystalline impurities such as KHF2 and ionic impurities such as Mn3+ are found to affect the phosphor performance. While Mn3+ mainly influences the optical absorption behavior, KHF2 can affect both the optical performance and chemical stability of the phosphor. Moisture leads to decomposition of KHF2, forming HF and amorphous hydrated potassium fluoride. As a consequence of hydrate formation, significant amounts of water can be absorbed in impure phosphor powders containing KHF2, facilitating the hydrolysis of [MnF6]2- complexes and affecting the optical absorption of the phosphors. Strategies are discussed to identify impurities and to achieve pure and stable phosphors with internal quantum efficiencies of more than 90%.

5.
Materials (Basel) ; 10(12)2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29231901

ABSTRACT

Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+) was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl-/Na⁺/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging.

SELECTION OF CITATIONS
SEARCH DETAIL