Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(29): e2200635119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858320

ABSTRACT

How subtropical marine low cloud cover (LCC) will respond to global warming is a major source of uncertainty in future climate change. Although the estimated inversion strength (EIS) is a good predictive index of LCC, it has a serious limitation when applied to evaluate LCC changes due to warming: The LCC decreases despite increases in EIS in future climate simulations of global climate models (GCMs). In this work, using state-of-the-art GCMs, we show that the recently proposed estimated cloud-top entrainment index (ECTEI) decreases consistently with LCC in warmer sea surface temperature (SST) climates. For the patterned SST warming predicted by coupled GCMs, ECTEI can constrain the subtropical marine LCC feedback to -0.41 ± 0.28% K-1 (90% CI), implying virtually certain positive feedback. ECTEI physically explains the heuristic model for LCC changes based on a linear combination of EIS and SST changes in previous studies in terms of cloud-top entrainment processes.


Subject(s)
Global Warming , Feedback , Forecasting , Hot Temperature
2.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34149115

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

3.
Philos Trans A Math Phys Eng Sci ; 373(2054)2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26438278

ABSTRACT

We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL