Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Chemistry ; 30(56): e202401603, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39288294

ABSTRACT

Three iridium(III) triazolato complexes of the general formula [Ir(triazolatoR,R')(ppy)(terpy)]PF6 with ppy=2-phenylpyridine and terpy=2,2':6',2''-terpyridine were efficiently prepared by iClick reaction of [Ir(N3)(ppy)(terpy)]PF6, with alkynes and alkynones, which allowed facile introduction of biological carriers such as biotin and cholic acid. In contrast to the precursor azido complex, which decomposed upon photoexcitation on a very short time scale, the triazolato complexes were stable in solution for up to 48 h. They emit in the spectral region around 540 nm with a quantum yield of 15-35 % in aerated acetonitrile solution and exhibit low cytotoxicity with IC50 values >50 µM for most complexes in L929 and HeLa cells, demonstrating their high suitability as luminescent probes. Cell uptake studies with confocal luminescence microscopy in prokaryotic Gram-positive S. aureus and Gram-negative E. coli bacteria as well as eukaryotic mammalian L929 and HeLa cells showed significant uptake in particular of the cholic acid conjugates iridium(III) moiety and distinct intracellular distribution modulated by the nature of the peripheral functional groups that can easily be modified by the iClick reaction.


Subject(s)
Alkynes , Coordination Complexes , Escherichia coli , Iridium , Staphylococcus aureus , Iridium/chemistry , Humans , HeLa Cells , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Staphylococcus aureus/drug effects , Alkynes/chemistry , Escherichia coli/drug effects , Animals , Mice , Cholic Acid/chemistry , Triazoles/chemistry
2.
EMBO Rep ; 22(8): e52071, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34288362

ABSTRACT

Organismal functionality and reproduction depend on metabolic rewiring and balanced energy resources. However, the crosstalk between organismal homeostasis and fecundity and the associated paracrine signaling mechanisms are still poorly understood. Using Caenorhabditis elegans, we discovered that large extracellular vesicles (known as exophers) previously found to remove damaged subcellular elements in neurons and cardiomyocytes are released by body wall muscles (BWM) to support embryonic growth. Exopher formation (exopheresis) by BWM is sex-specific and a non-cell autonomous process regulated by developing embryos in the uterus. Embryo-derived factors induce the production of exophers that transport yolk proteins produced in the BWM and ultimately deliver them to newly formed oocytes. Consequently, offspring of mothers with a high number of muscle-derived exophers grew faster. We propose that the primary role of muscular exopheresis is to stimulate reproductive capacity, thereby influencing the adaptation of worm populations to the current environmental conditions.


Subject(s)
Caenorhabditis elegans Proteins , Genetic Fitness , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Female , Male , Muscles , Reproduction
3.
Inorg Chem ; 62(26): 10470-10480, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37338927

ABSTRACT

Neurodegenerative diseases are often associated with an uncontrolled amyloid aggregation. Hence, many studies are oriented to discover new compounds that are able to modulate self-recognition mechanisms of proteins involved in the development of these pathologies. Herein, three metal-complexes able to release carbon monoxide (CORMs) were analyzed for their ability to affect the self-aggregation of the amyloidogenic fragment of nucleophosmin 1, corresponding to the second helix of the three-helix bundle located in the C-terminal domain of the protein, i.e., NPM1264-277, peptide. These complexes were two cymantrenes coordinated to the nucleobase adenine (Cym-Ade) and to the antibiotic ciprofloxacin (Cym-Cipro) and a Re(I)-compound containing 1,10-phenanthroline and 3-CCCH2NHCOCH2CH2-6-bromo-chromone as ligands (Re-Flavo). Thioflavin T (ThT) assay, UV-vis absorption and fluorescence spectroscopies, scanning electron microscopy (SEM), and electrospray ionization mass spectrometry (ESI-MS) indicated that the three compounds have different effects on the peptide aggregation. Cym-Ade and Cym-Cipro act as aggregating agents. Cym-Ade induces the formation of NPM1264-277 fibers longer and stiffer than that formed by NPM1264-277 alone; irradiation of complexes speeds the formation of fibers that are more flexible and thicker than those found without irradiation. Cym-Cipro induces the formation of longer fibers, although slightly thinner in diameter. Conversely, Re-Flavo acts as an antiaggregating agent. Overall, these results indicate that metal-based CORMs with diverse structural features can have a different effect on the formation of amyloid fibers. A proper choice of ligands attached to metal can allow the development of metal-based drugs with potential application as antiamyloidogenic agents.


Subject(s)
Coordination Complexes , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ligands , Metals , Peptides , Nuclear Proteins , Ciprofloxacin , Amyloid , Amyloid beta-Peptides
4.
Bioorg Chem ; 141: 106921, 2023 12.
Article in English | MEDLINE | ID: mdl-37871392

ABSTRACT

Xeno nucleic acids (XNA) are an increasingly important class of hypermodified nucleic acids with great potential in bioorganic chemistry and synthetic biology. Glycol nucleic acid (GNA) is constructed from a three-carbon 1,2-propanediol (propylene glycol) backbone attached to a nucleobase entity, representing the simplest known XNA. This review is intended to present GNA nucleosides from a synthetic chemistry perspective-a perspective that serves as a starting point for biological studies. Therefore this account focuses on synthetic methods for GNA nucleoside synthesis, as well as their postsynthetic chemical transformations. The properties and biological activity of GNA constituents are also highlighted. A literature survey shows four major approaches toward GNA nucleoside scaffold synthesis. These approaches pertain to glycidol ring-opening, Mitsunobu, SN2, and dihydroxylation reactions. The general arsenal of reactions used in GNA chemistry is versatile and encompasses the Sonogashira reaction, Michael addition, silyl-Hilbert-Johnson reaction, halogenation, alkylation, cyclization, Rh-catalyzed N-allylation, Sharpless catalytic dihydroxylation, and Yb(OTf)3-catalyzed etherification. Additionally, various phosphorylation reactions have enabled the synthesis of diverse types of GNA nucleotides, dinucleoside phosphates, phosphordiamidites, and oligos. Furthermore, recent advances in GNA chemistry have resulted in the synthesis of previously unknown redox-active (ferrocenyl) and luminescent (pyrenyl and phenanthrenyl) GNA nucleosides, which are also covered in this review.


Subject(s)
Nucleic Acids , Nucleic Acids/chemistry , Nucleosides/chemistry , Glycols/chemistry , Nucleotides , Propylene Glycol
5.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373347

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease. To manage motor symptoms not controlled adequately with medication, deep brain stimulation (DBS) is used. PD patients often manifest vitamin D deficiency, which may be connected with a higher risk of falls. We administered a 12-week vitamin D3 supplementation based on BMI (with higher doses given to patients with higher BMI) to investigate its effects on physical performance and inflammation status in PD patients with DBS. Patients were randomly divided into two groups: treated with vitamin D3 (VitD, n = 13), and supplemented with vegetable oil as the placebo group (PL, n = 16). Patients underwent functional tests to assess their physical performance three times during this study. The serum 25(OH)D3 concentration increased to the recommended level of 30 ng/mL in the VitD group, and a significant elevation in vitamin D metabolites in this group was found. We observed significant improvement in the Up and Go and the 6 MWT in the VitD group. In inflammation status, we noticed a trend toward a decrease in the VitD group. To conclude, achieving the optimal serum 25(OH)D3 concentration is associated with better functional test performance and consequently may have a positive impact on reducing falling risk in PD.


Subject(s)
Deep Brain Stimulation , Neurodegenerative Diseases , Parkinson Disease , Vitamin D Deficiency , Humans , Cholecalciferol , Parkinson Disease/drug therapy , Neurodegenerative Diseases/drug therapy , Body Mass Index , Vitamin D/therapeutic use , Vitamins/therapeutic use , Dietary Supplements , Vitamin D Deficiency/drug therapy , Inflammation/drug therapy
6.
Inorg Chem ; 61(25): 9650-9666, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35699521

ABSTRACT

Mixed-valence (MV) binuclear ferrocenyl compounds have long been studied as models for testing theories of electron transfer and in attempts to design molecular-scale electronic devices (e.g., molecular wires). In contrary to that, far less attention has been paid to MV binuclear ferrocenes as anticancer agents. Herein, we discuss the synthesis of six 1,2,3-triazole ferrocenyl compounds for combined (spectro)electrochemical, electron paramagnetic resonance (EPR), computational, and anticancer activity studies. Our synthetic approach was based on the copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction and enabled us to obtain in one step compounds bearing either one, two, or three ferrocenyl entities linked to the common 1,2,3-triazole core. Thus, two series of complexes were obtained, which pertain to derivatives of 3'-azido-3'-deoxythymidine (AZT) and 3-azidopropionylferrocene, respectively. Based on the experimental and theoretical data, the two mono-oxidized species corresponding to binuclear AZT and trinuclear 3-azidopropionylferrocene complexes have been categorized as class II mixed-valence according to the classification proposed by Robin and Day. Of importance is the observation that these two compounds are more active against human A549 and H1975 non-small-cell lung cancer cells than their congeners, which do not show MV characteristics. Moreover, the anticancer activity of MV species competes or surpasses, dependent on the cell line, the activity of reference anticancer drugs such as cisplatin, tamoxifen, and 5-fluorouracil. The most active from the entire series of compounds was the binuclear thymidine derivative with the lowest IC50 value of 5 ± 2 µM against lung H1975 cancer cells. The major mechanism of antiproliferative activity for the investigated MV compounds is based on reactive oxygen species generation in cancer cells. This hypothesis was substantiated by EPR spin-trapping experiments and the observation of decreased anticancer activity in the presence of N-acetyl cysteine (NAC) free-radical scavenger.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antineoplastic Agents/chemistry , Electronics , Humans , Metallocenes , Reactive Oxygen Species/metabolism , Triazoles/chemistry
7.
Bioorg Chem ; 119: 105514, 2022 02.
Article in English | MEDLINE | ID: mdl-34864281

ABSTRACT

Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Erlotinib Hydrochloride/pharmacology , Iron Compounds/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Erlotinib Hydrochloride/chemistry , Humans , Iron Compounds/chemistry , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Triazoles/chemistry
8.
Bioorg Chem ; 125: 105847, 2022 08.
Article in English | MEDLINE | ID: mdl-35526436

ABSTRACT

The knowledge pertaining to the chemistry and biological activity of glycol nucleic acid (GNA) components, like nucleosides and nucleotides, is still very limited. Herein we report on the preparation of the uracil nucleoside (1) and nucleotide ester GNA (2). The compounds are functionalised with a luminescent phenanthrenyl group. In DMSO, 1 and 2 are brightly fluorescent, with emission maxima at 390 nm, nanosecond decay times (0.6 and 0.75 ns, respectively), and quantum yields of ca. 0.2. In the solid phase, they show excimeric emission, with maxima at 495 nm (1) and 432 nm (2), and decay times of 3.7 ns (1) and 2.9 ns (2). The anticancer activity of the GNA components, as well as gemcitabine hydrochloride, used as a reference drug, were examined in vitro against human cancer HeLa and Ishikawa cells, as well as against normal L929 cells, using a battery of biochemical assays. Furthermore, biodistribution imaging studies were carried out in HeLa cells, with luminescence confocal microscopy, which showed that the compounds localized mainly in the lipophilic cellular compartments. Nucleoside (1) and nucleotide ester (2) features two different anticancer activity profiles. At 24 h of treatment, the nucleoside acts mainly as a toxin and induces necrosis in HeLa cells, whereas the nucleotide ester exhibits pro-apoptotic activity. At longer treatment times (72 h), the nucleoside and the reference, gemcitabine hydrochloride, featured almost identical signs of anticancer activity, such as S-phase cell cycle arrest, proliferation inhibition, and apoptosis induction. In view of this data, one can hypothesize that despite the structural differences, the newly obtained phenanthrenyl GNA nucleoside (1) and gemcitabine may share a common mechanism of anticancer activity in HeLa cancer cells. The GNA components were also examined as antiplasmodial agents against Plasmodium falciparum, in vitro. Nucleoside (1) was found to be more potent than nucleotide (2), displaying activity in the low micromolar range. Furthermore, both phenanthrene derivatives were found to display resistance indices at least 9-fold lower than chloroquine diphosphate (CQDP).


Subject(s)
Nucleic Acids , Esters , Glycols/chemistry , HeLa Cells , Humans , Nucleic Acids/chemistry , Nucleotides , Tissue Distribution
9.
Chemistry ; 27(71): 17928-17940, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34714566

ABSTRACT

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/drug effects
10.
Chembiochem ; 21(15): 2187-2195, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32182393

ABSTRACT

The conjugation of organometallic groups to current ß-lactam antibiotics is a field of increasing study due to the ability of certain organometallic groups to enhance the antibiotic potency of these drugs. Herein, we report the antibacterial properties of two metallocenyl (ferrocenyl and ruthenocenyl) 7-aminocephalosporanic acid (7-ACA) antibiotic conjugates. Continuing a trend we found in our previous studies, the ruthenocenyl conjugate showed greater antibacterial activity than its ferrocenyl counterpart. Compared with the previously published 7-aminodesacetoxycephalosporanic acid (7-ADCA) conjugates, the 3-acetyloxymethyl group significantly improved the compounds' activity. Furthermore, the Rc-7-ACA compound was more active against clinical Staphylococcus aureus isolates than the ampicillin reference. Noticeably, neither of the two new compounds showed an undesirable toxic effect in HeLa and L929 cells at the concentrations at which they displayed strong antibacterial effects. The antibacterial activity of the two metallocenyl 7-ACA derivatives was further confirmed by scanning electron microscopy (SEM). SEM micrographs showed that bacteria treated with metallocenyl 7-ACA derivatives feature cell wall damage and morphology changes. Using a CTX-M-14 ß-lactamase competition assay based on nitrocefin hydrolysis, we showed that the Rc-7-ACA bound more favorably to CTX-M-14 than its ferrocenyl counterpart, again confirming the superiority of the ruthenocenyl moiety over the ferrocenyl one in interacting with proteins. We also report a 1.47 Å resolution crystal structure of Rc-7-ACA in complex with the CTX-M-14 E166A mutant, an enzyme sharing a similar active site configuration with penicillin-binding proteins, the molecular target of ß-lactam antibiotics. These results strengthen the case for the antibacterial utility of the Rc and Fc groups.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cephalosporins/chemistry , Cephalosporins/pharmacology , beta-Lactamases/chemistry , Anti-Bacterial Agents/metabolism , Cephalosporins/metabolism , Crystallography, X-Ray , HeLa Cells , Humans , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , beta-Lactamases/metabolism
11.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105558

ABSTRACT

In the reported study we applied the targeted metabolomic profiling employing high pressure liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-MS/MS) to understand the pathophysiology of gestational diabetes mellitus (GDM), early identification of women who are at risk of developing GDM, and the differences in recovery postpartum between these women and normoglycemic women. We profiled the peripheral blood from patients during the second trimester of pregnancy and three months, and one year postpartum. In the GDM group Arg, Gln, His, Met, Phe and Ser were downregulated with statistical significance in comparison to normoglycemic (NGT) women. From the analysis of the association of all amino acid profiles of GDM and NGT women, several statistical models predicting diabetic status were formulated and compared with the literature, with the arginine-based model as the most promising of the screened ones (area under the curve (AUC) = 0.749). Our research results have shed light on the critical role of arginine in the development of GDM and may help in precisely distinguishing between GDM and NGT and earlier detection of GDM but also in predicting women with the increased type 2 diabetes mellitus (T2DM) risk.


Subject(s)
Arginine/blood , Biomarkers/blood , Diabetes, Gestational/blood , Adult , Amino Acids/blood , Area Under Curve , Cluster Analysis , Female , Follow-Up Studies , Glucose Tolerance Test , Humans , Pregnancy , Pregnancy Trimester, Second/blood , Principal Component Analysis
12.
Photochem Photobiol Sci ; 18(10): 2449-2460, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31407765

ABSTRACT

Glycol nucleic acids (GNA) are synthetic genetic-like polymers with an acyclic three-carbon propylene glycol phosphodiester backbone. Here, synthesis, luminescence properties, circular dichroism (CD) spectra, and confocal microscopy speciation studies of (R,S) and (S,R) pyrenyl-GNA (pyr-GNA) nucleosides are reported in HeLa cells. Enantiomerically pure nucleosides were obtained by a Sharpless asymmetric dihydroxylation reaction followed by semi-preparative high-performance liquid chromatography (HPLC) separation using Amylose-2 as the chiral stationary phase. The enantiomeric relationship between stereoisomers was confirmed by CD spectra, and the absolute configurations were assigned based on experimental and theoretical CD spectra comparisons. The pyr-GNA nucleosides were not cytotoxic against human cervical (HeLa) cancer cells and thus were utilized as luminescent probes in the imaging of these cells with confocal microscopy. Cellular staining patterns were identical for both enantiomers in HeLa cells. Compounds showed no photocytotoxic effect and were localized in the lipid membranes of the mitochondria, in cellular vesicles and in other lipid cellular compartments. The overall distribution of the pyrene and pyrenyl-GNA nucleosides inside the living HeLa cells differed, since the former compound gives a more granular staining pattern and the latter a more diffuse one.


Subject(s)
Fluorescent Dyes/chemistry , Microscopy, Confocal , Nucleic Acids/chemistry , Nucleosides/chemical synthesis , Pyrenes/chemistry , Cell Survival/drug effects , Circular Dichroism , Crystallography, X-Ray , Density Functional Theory , Fluorescent Dyes/chemical synthesis , Glycols/chemistry , HeLa Cells , Humans , Molecular Conformation , Nucleosides/chemistry , Nucleosides/pharmacology , Stereoisomerism
13.
J Incl Phenom Macrocycl Chem ; 87(3): 341-348, 2017.
Article in English | MEDLINE | ID: mdl-28356784

ABSTRACT

Recently a great interest in the field of protein engineering and the design of innovative drug delivery systems employing specific ligands such as cyclodextrins is observed. The paper reports the solid state, thermal method for protein coupling with ß-cyclodextrin and the physicochemical and biological properties of the obtained conjugates. The structure of the obtained conjugates was investigated via liquid chromatography-mass spectrometry, dynamic light scattering and circular dichroism analysis. The presented conjugates were biologically active and covalently bound ß-cyclodextrin preserved the ability to form inclusion complexes with the model compound. This report demonstrates the great potential of cyclodextrin as a modifying unit that can be used to modulate the properties of therapeutic proteins, additionally giving such conjugates the possibility to transport many therapeutic substances in the form of inclusion complexes. In addition, the paper presents the potential of protein-cyclodextrin conjugates to construct innovative bioactive molecules for biological and medical applications.

14.
Molecules ; 22(5)2017 May 15.
Article in English | MEDLINE | ID: mdl-28505142

ABSTRACT

Two new neutral fac-[Re(CO)3(phen)L] compounds (1,2), with phen = 1,10-phenanthroline and L = O2C(CH2)5CH3 or O2C(CH2)4C≡CH, were synthetized in one-pot procedures from fac-[Re(CO)3(phen)Cl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, ¹H- and 13C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac-[Re(CO)3(phen)L], with L = O2C(CH2)3((C5H5)Fe(C5H4), i.e., containing a ferrocenyl moiety, was synthetized and characterized (3). 3 shows the same mitochondrial accumulation pattern as 1 and 2. Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac-[Re(CO)3(phen)]⁺ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 1-3 is due to the formation of luminescent fac-[Re(CO)3(phen)]⁺ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications.


Subject(s)
Mitochondria/metabolism , Rhenium/metabolism , HeLa Cells , Humans , Luminescence , Magnetic Resonance Spectroscopy , Microscopy, Confocal , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Phenanthrolines/chemistry , Rhenium/chemistry
15.
Molecules ; 22(12)2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29240697

ABSTRACT

The synthesis of four cymantrene-5-fluorouracil derivatives (1-4) and two cymantrene-adenine derivatives (5 and 6) is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6), together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P21/m space group. The newly synthesized compounds 1-6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG), five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains), Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50) values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5) displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3-4 µM). The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8-64 µg/mL and seemed to be the result of induced cell shrinking.


Subject(s)
Adenine/analogs & derivatives , Adenine/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Fluorouracil/analogs & derivatives , Fluorouracil/chemical synthesis , Organometallic Compounds/chemical synthesis , Trypanocidal Agents/chemical synthesis , Adenine/pharmacology , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Fluorouracil/pharmacology , Humans , Organometallic Compounds/pharmacology , Oxidative Stress/drug effects , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects
16.
Beilstein J Org Chem ; 13: 2521-2534, 2017.
Article in English | MEDLINE | ID: mdl-29259662

ABSTRACT

Fluorescent pyrene-linker-nucleobase (nucleobase = thymine, adenine) conjugates with carbonyl and hydroxy functionalities in the linker were synthesized and characterized. X-ray single-crystal structure analysis performed for the pyrene-C(O)CH2CH2-thymine (2) conjugate reveals dimers of molecules 2 stabilized by hydrogen bonds between the thymine moieties. The photochemical characterization showed structure-dependent fluorescence properties of the investigated compounds. The conjugates bearing a carbonyl function represent weak emitters as compared to compounds with a hydroxy function in the linker. The self-assembly properties of pyrene nucleobases were investigated in respect to their binding to single and double strand oligonucleotides in water and in buffer solution. In respect to the complementary oligothymidine T10 template in water, compounds 3 and 5 both show a self-assembling behavior according to canonical base-base pairing. However, in buffer solution, derivative 5 was much more effective than 3 in binding to the T10 template. Furthermore the adenine derivative 5 binds to the double-stranded (dA)10-T10 template with a self-assembly ratio of 112%. Such a high value of a self-assembly ratio can be rationalized by a triple-helix-like binding, intercalation, or a mixture of both. Remarkably, compound 5 also shows dual staining pattern in living HeLa cells. Confocal microscopy confirmed that 5 predominantly stains mitochondria but it also accumulates in the nucleoli of the cells.

17.
Biochim Biophys Acta ; 1850(2): 411-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445715

ABSTRACT

BACKGROUND: Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. METHODS: The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. RESULTS: The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. CONCLUSIONS: To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. GENERAL SIGNIFICANCE: The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing.


Subject(s)
Boron Compounds/chemistry , Boron Compounds/chemical synthesis , Boron/chemistry , Muramidase/chemistry , Boron Neutron Capture Therapy/methods , Catalysis , Neoplasms/therapy
18.
Chembiochem ; 16(3): 424-31, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25589498

ABSTRACT

Two complementary methods, "in solution" and "in solid state", for the synthesis of lysozyme modified with metallacarborane (cobalt bis(dicarbollide), Co(C2 B9 H11 )2 (2-) ) were developed. As metallacarborane donors, oxonium adducts of cobalt bis(dicarbollide) and 1,4-dioxane or tetrahydropyran were used. The physicochemical and biochemical properties of the obtained lysozyme-metallacarborane conjugates were studied for changes in secondary and tertiary structure, aggregation behavior, and biological activity. Only minor changes in primary, secondary, and tertiary protein structure were observed, caused by the single substitution of metallacarborane on lysozyme. However, the modification produced significant changes in lysozyme enzymatic activity and a tendency toward time- and temperature-dependent aggregation.


Subject(s)
Boron/chemistry , Muramidase/chemistry , Muramidase/metabolism , Organometallic Compounds/chemical synthesis , Circular Dichroism , Cobalt/chemistry , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Stability , Solid-Phase Synthesis Techniques/methods , Spectrometry, Mass, Electrospray Ionization
19.
Molecules ; 20(11): 19699-718, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26528965

ABSTRACT

Three gold(I) complexes of alkynyl chromones were synthesized and characterized. The single-crystal X-ray structure analysis of a dinuclear compound and of a flavone derivative exhibit a typical d10 gold(I)-alkynyl linear arrangement. All complexes were evaluated as anticancer and antibacterial agents against four human cancer cell lines and four pathogenic bacterial strains. All compounds show antiproliferative activity at lower micromolar range concentrations. Complex 4 showed a broad activity profile, being more active than the reference drug auranofin against HepG2, MCF-7 and CCRF-CEM cancer cells. The cellular uptake into MCF-7 cells of the investigated complexes was measured by atomic absorption spectroscopy (AAS). These measurements showed a positive correlation between an increased cellular gold content and the incubation time of the complexes. Unexpectedly an opposite effect was observed for the most active compound. Biological assays revealed various molecular mechanisms for these compounds, comprising: (i) thioredoxin reductase (TrxR) inhibition, (ii) caspases-9 and -3 activation; (iii) DNA damaging activity and (iv) cell cycle disturbance. The gold(I) complexes were also bactericidal against Gram-positive methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) bacterial strains, while showing no activity against the Gram-negative Escherichia coli bacterial strain.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Chromones/pharmacology , Gold , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromones/chemical synthesis , Chromones/chemistry , Gold/chemistry , Hemolysis/drug effects , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Molecular , X-Ray Diffraction
20.
Molecules ; 19(7): 10350-69, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25036149

ABSTRACT

In the course of the preparation of a series of ferrocenyl derivatives of diethylstilbestrol (DES), in which one of the 4-hydroxyphenyl moieties was replaced by a ferrocenyl group, the McMurry reaction of chloropropionylferrocene with a number of mono-aryl ketones unexpectedly yielded the hydroxylated ferrocenyl DES derivatives, 5a-c, in poor yields (10%-16%). These compounds showed high activity on the hormone-independent breast cancer cell line MDA-MB-231 with IC50 values ranging from 0.14 to 0.36 µM. Surprisingly, non-hydroxylated ferrocenyl DES, 4, showed only an IC50 value of 1.14 µM, illustrating the importance of the hydroxyethyl function in this promising new series. For comparison, McMurry reactions of the shorter chain analogue chloroacetylferrocene were carried out to see the difference in behaviour with mono-aryl ketones versus a diaryl ketone. The effect of changing the length of the alkyl chain adjacent to the phenolic substituent of the hydroxylated ferrocenyl DES was studied, a mechanistic rationale to account for the unexpected products is proposed, and the antiproliferative activities of all of these compounds on MDA-MB-231 cells lines were measured and compared. X-ray crystal structures of cross-coupled products and of pinacol-pinacolone rearrangements are reported.


Subject(s)
Antineoplastic Agents/chemistry , Ferrous Compounds/chemistry , Phenol/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Combinatorial Chemistry Techniques , Humans , Inhibitory Concentration 50 , Metallocenes , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL